Novel Catalyst Systems

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$167,022.00
Award Year:
2011
Program:
SBIR
Phase:
Phase I
Contract:
1R43GM088939-01A2
Award Id:
n/a
Agency Tracking Number:
R43GM088939
Solicitation Year:
2011
Solicitation Topic Code:
NIGMS
Solicitation Number:
PA10-050
Small Business Information
335 Water Street, Newport, DE, 19804-
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
808898894
Principal Investigator:
ANDREWFEIRING
(302) 999-7996
afeiring@compactmembrane.com
Business Contact:
STUARTNEMSER
(302) 999-7996
bkelley@compactmembrane.com
Research Institute:
Stub




Abstract
DESCRIPTION (provided by applicant): Transition metal catalysts are widely used in the pharmaceutical industry for the production of active ingredients, precursors and new drug candidates. These products must be very pure, often requiring labor and energyintensive separation processes, to achieve the required purity levels. Of special concern in the present context is to avoid contaminating the product with the transition metal catalyst used during its synthesis. The above references are far from an exhaustive list but suggest the breadth and importance of the chemistry available from palladium catalysts. Palladium catalyzed reactions are ubiquitous in pharmaceutical process chemistry. Many synthetic processes rely on both heterogeneous and homogeneous catalysis. However, Pd is highly toxic, and the allowable level of palladium in an active pharmaceutical ingredient (API) is highly regulated, and must be less than 5 ppm (oral) or 0.5 ppm (parenteral). Accordingly, there is considerable interest in the development of new technologies that will ameliorate the problem of metal contamination in Pd- catalyzed processes. A variety of scavenger and filtering methods are used for removing palladium from APIs. Palladium removal essentially adds an extra step to a synthesis, and is consequently costly in terms of time and money. Although palladium catalysis is the major focus of this proposal, other metal species are also of interest. Compact Membrane Systems, Inc. (CMS) proposes a new catalyst system that provides the needed catalytic reactivity as described above but eliminates the extra steps associated with reducing/eliminating contamination. In Phase I CMS will fabricate palladium system, demonstrate its catalytic capability and determine contamination level in produce. Contingencies are included and overall economic evaluation is included. PUBLIC HEALTH RELEVANCE: It is proposed to eliminate the problem of leaching of transition metal catalysts into pharmaceutical process streams, which can contaminate theproduct and result in loss of costly catalyst materials. Combining fluorous technology with membranes we further enhance the ability to separate metal and other components from organic species. Successful implementation of this technology should result inhigher purity, lower cost products.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government