You are here

Novel Catalyst Systems

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R43GM088939-01A2
Agency Tracking Number: R43GM088939
Amount: $167,022.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: NIGMS
Solicitation Number: PA10-050
Solicitation Year: 2011
Award Year: 2011
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
335 Water Street
Newport, DE 19804-
United States
DUNS: 808898894
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 (302) 999-7996
Business Contact
Phone: (302) 999-7996
Research Institution

DESCRIPTION (provided by applicant): Transition metal catalysts are widely used in the pharmaceutical industry for the production of active ingredients, precursors and new drug candidates. These products must be very pure, often requiring labor and energyintensive separation processes, to achieve the required purity levels. Of special concern in the present context is to avoid contaminating the product with the transition metal catalyst used during its synthesis. The above references are far from an exhaustive list but suggest the breadth and importance of the chemistry available from palladium catalysts. Palladium catalyzed reactions are ubiquitous in pharmaceutical process chemistry. Many synthetic processes rely on both heterogeneous and homogeneous catalysis. However, Pd is highly toxic, and the allowable level of palladium in an active pharmaceutical ingredient (API) is highly regulated, and must be less than 5 ppm (oral) or 0.5 ppm (parenteral). Accordingly, there is considerable interest in the development of new technologies that will ameliorate the problem of metal contamination in Pd- catalyzed processes. A variety of scavenger and filtering methods are used for removing palladium from APIs. Palladium removal essentially adds an extra step to a synthesis, and is consequently costly in terms of time and money. Although palladium catalysis is the major focus of this proposal, other metal species are also of interest. Compact Membrane Systems, Inc. (CMS) proposes a new catalyst system that provides the needed catalytic reactivity as described above but eliminates the extra steps associated with reducing/eliminating contamination. In Phase I CMS will fabricate palladium system, demonstrate its catalytic capability and determine contamination level in produce. Contingencies are included and overall economic evaluation is included. PUBLIC HEALTH RELEVANCE: It is proposed to eliminate the problem of leaching of transition metal catalysts into pharmaceutical process streams, which can contaminate theproduct and result in loss of costly catalyst materials. Combining fluorous technology with membranes we further enhance the ability to separate metal and other components from organic species. Successful implementation of this technology should result inhigher purity, lower cost products.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government