TcdB Based Protein Delivery of iPSC Reprogramming Factors

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$324,516.00
Award Year:
2011
Program:
SBIR
Phase:
Phase I
Contract:
1R43GM093530-01A1
Award Id:
n/a
Agency Tracking Number:
R43GM093530
Solicitation Year:
2011
Solicitation Topic Code:
NIGMS
Solicitation Number:
PA10-050
Small Business Information
1448 S Rolling Road, BALTIMORE, MD, 21227-
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
791107563
Principal Investigator:
YUNG CHANG
(301) 987-0480
yung.chang@synapticresearch.com
Business Contact:
YUNG CHANG
(443) 543-5890
yung.chang@synapticresearch.com
Research Institution:
Stub




Abstract
DESCRIPTION (provided by applicant): Induced pluripotent stem cells (iPSC) have tremendous potential for regenerative medicine in future. However, there are obstacles to overcome before the iPSC can be used therapeutically. One major hurdle is the tool used to generate iPSC from adult somatic cells. We believe that the delivery of reprogramming proteins directly rather than the genes that encode these proteins is the safest means for generating iPSC. We propose to engineer Clostridium difficile toxin TcdB as a cytosolic delivery vehicle for embryonic transactivators that can reprogram adult somatic cells to induced pluripotent stem cells (iPSC) and/or tissue specific cells. C. difficile toxin TcdB, exhibits multiple modular domains that provide all the mechanisms that allow the toxin efficiently deliver its N-terminal enzymatic domain (GT domain) to cytosol. We will engineer TcdB as a universal protein delivery vehicle by replaceing the enzymatic domain with a protein cargo to provide therapeutic benefits.We will initially append a chimeric transacivator to the N-terminus of the toxin or replace the GT domain with the chimeric transactivator. Using a high-throughput reporter cell line system, we will first examine how effectively the engineered recombinantprotein can deliver a biologically active cargo. We will then test if the engineered TcdB can deliver biologically active reprogramming factors (Oct4 and Sox2) to another reporter cell line and assess their ability to differentiate mouse embryonic stem cells with the help of our collaborators. Finally, we will use the TcdB delivery vehicle to generate of iPSC from mouse embryonic fibroblasts after we demonstrate that we can deliver those reprogramming factors efficiently to the well-characterized reportercells. Other methods of delivering proteins, such as the TAT protein transduction domain, will be tested in parallel to compare the efficiency of our novel system to established techniques. We believe this TcdB-based protein delivery vehicle will be a valuable tool for generating iPSC for research purposes, drug development, and toxicology studies. We also anticipate the development of TcdB-based biologics for regenerative medicine. PUBLIC HEALTH RELEVANCE: This project will investigate the use of anew protein delivery vehicle to introduce reprogramming factors to adult skin cells in order to convert them to induced pluripotent stem cells (iPSC). This approach relies on proteins rather than genes to create iPSC, which avoids the potential dangers ofgenetic modification. These iPSC have enormous potential to replace embryonic stem cells for regenerative medicine.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government