Oligonucleotides that Modulate AMPA Receptor Alternative Splicing as Drug Candida

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$458,274.00
Award Year:
2011
Program:
SBIR
Phase:
Phase I
Contract:
1R43NS076194-01
Agency Tracking Number:
R43NS076194
Solicitation Year:
2011
Solicitation Topic Code:
NINDS
Solicitation Number:
PA10-050
Small Business Information
LIFESPLICE PHARMA, LLC
1064 GLEN HALL RD, KENNETT SQUARE, PA, 19348-1017
Hubzone Owned:
N
Socially and Economically Disadvantaged:
N
Woman Owned:
N
Duns:
965376994
Principal Investigator:
GORDON LUTZ
(215) 762-2396
gordon.lutz@lifesplicepharma.com
Business Contact:
MELANIE TALLENT
(610) 347-2289
melanie.tallent@lifesplicepharma.com
Research Institution:
Stub




Abstract
DESCRIPTION (provided by applicant): Amyotrophic lateral sclerosis (ALS) is characterized by the progressive and selective loss of motor neurons (MNs) in the motor cortex, brainstem, and spinal cord, resulting in death of patients typically 2-5 years after diagnosis. Glutamate-mediated excitotoxicity in the CNS has been implicated as a major contributor to MN cell death in ALS. It is thought that the vulnerability of MNs to glutamate-mediated excitotoxicity is due to a combination of their high densityof Ca2+ permeable ion channels, and their diminished capacity to handle excessive Ca2+ influx, which serves as a trigger for neurodegeneration. Why MNs of ALS patients are especially vulnerable to excitotoxicity remains unknown, but there is nearly universal acceptance that excitotoxicity contributes to selective death on MNs in ALS patients. Therefore, the development of drugs which lower Ca2+ influx during excitatory activity in the CNS, is a crucial focal point in the pursuit for therapeutics for ALS. Ionotropic AMPA receptors are glutamate-activated ion channels that are key mediators of Ca2+ influx in MNs. AMPA receptors are composed of four subunits termed GluR1-4. Two alternatively spliced variants of all four GluRs called flip and flop are normally expressed in the CNS and are known to modulate AMPA channel conductance. AMPA channels containing GluR-flip isoforms are 'higher gain' channels, which have greater current amplitudes and/or greater resistant to glutamate-desensitization than the 'lowergain' AMPA channels containing flop variants. Thus, when the flip/flop ratios of GluRs are elevated, AMPA receptors in MNs show enhanced excitatory activity, and greater Ca2+ influx. We recently developed several novel chemically-modified RNA oligonucleotides, called splice modulating oligomers (SMOs), which potently and specifically modulate GluR alternative splicing to reduce the flip/flop ratio of various GluR isoforms. Although SMOs do not cross the blood-brain-barrier, after direct delivery into theCSF they are broadly distributed throughout the CNS and have the extraordinary capacity to readily to cross the membrane and enter the nuclei of cells in the CNS, where their splice modulating activity persists for months. Here we propose a translational set of experiments to validate the potential of our SMOs as therapeutics for treating ALS. First, we will compare the efficacy of our lead SMO (LSP-GR3) in reducing GluR3-flip expression throughout the CNS, using (1) continuous ICV delivery, and (2) singlebolus injection into the lumbar sac of the spinal column (Aim 1). We will then use the best delivery modality determined in Aim 1 and evaluate the efficacy of our two lead SMOs to improve motor function, and increase lifespan in ALS mice (Aim 2). PUBLIC HEALTH RELEVANCE: This proposal is designed to provide the 'proof of principle' that novel drug candidates developed by LifeSplice Pharma, LLC are efficacious at ameliorating pathology in ALS mice. These studies will lead to formal toxicology analysis, and ultimately an IND application and FDA approval for clinical trials in ALS patients.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government