High Torque, Direct Drive Electric Motor

Award Information
Agency:
National Aeronautics and Space Administration
Amount:
$597,439.00
Program:
SBIR
Contract:
NNX11CB28C
Solitcitation Year:
2009
Solicitation Number:
N/A
Branch:
N/A
Award Year:
2011
Phase:
Phase II
Agency Tracking Number:
094263
Solicitation Topic Code:
S5.03
Small Business Information
Bear Technologies, LLC
VA, Maidens, VA, 23102-2238
Hubzone Owned:
N
Woman Owned:
N
Socially and Economically Disadvantaged:
N
Duns:
800224888
Principal Investigator
 Thomas Myrick
 Principal Investigator
 (804) 240-0814
 tom.myrick@gmail.com
Business Contact
 Karron Myrick
Title: Director of Finance&Bus Dev
Phone: (804) 239-7221
Email: kmyrick@bearmechanisms.com
Research Institution
 Stub
Abstract
Bear Engineering proposes to advance the development of an innovative high torque, low speed, direct drive motor in order to meet NASA's requirements for such devices. Fundamentally, all electric motors basically work on the same electromagnetic principle: a tangential electromagnetic force attracts the rotor to the stator. Just when the rotor field is closest to the stator field and the electromagnetic attraction is greatest, the power is interrupted and another set of magnetic poles repeats the cycle. Furthermore, the two magnetically attracted elements never make contact, which would otherwise offer the highest force of attraction.The proposed novel motor design, successfully demonstrated at TRL 4 in Phase 1, operates and behaves entirely differently from all other known electric motor designs and is capable of producing incredibly high, direct drive torques at low rotational speeds. Its operational performance is similar to that of a stepper motor with a 1000:1 gearhead attached, but the similarity ends there. The motor is configured such that its length to diameter aspect ratio is opposite that of traditional motors as it has a relatively large diameter and short axial length; this offers all new packaging opportunities. The design also allows for a single, large diameter bearing pair to be used for the motor's output shaft which renders it stiff enough to directly mount the driven elements. The need for additional bearing supports and bearing mounting structure is thus eliminated. By the end of Phase 2, the system will be designed, developed and tested at TRL 6 with Mars environmental conditions.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government