Aerogel-Filled Foam Core Insulation for Cryogenic Propellant Storage, Phase II

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNX11CC15C
Agency Tracking Number: 095372
Amount: $600,000.00
Phase: Phase II
Program: SBIR
Awards Year: 2011
Solicitation Year: 2009
Solicitation Topic Code: X8.01
Solicitation Number: N/A
Small Business Information
Ultramet
12173 Montague Street, Pacoima, CA, 91331-2210
DUNS: 052405867
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Victor Arrieta
 Principal Investigator
 (818) 899-0236
 victor.arrieta@ultramet.com
Business Contact
 Craig Ward
Title: Engineering Administrative Mgr
Phone: (818) 818-0236
Email: craig.ward@ultramet.com
Research Institution
 Stub
Abstract
Current cryogenic insulation materials suffer from various drawbacks including high cost and weight, lack of structural or load-bearing capability, fabrication complexity, and property anisotropy. A need clearly exists for lightweight thermal insulation that is isotropic and structurally capable with high thermal performance, while also offering reduced fabrication and installation complexity and lower cost. In previous work for NASA and DoD involving lightweight structural insulation for high temperature engine and airframe applications, Ultramet developed and demonstrated lightweight open-cell foam insulators composed of a carbon or ceramic structural foam skeleton filled with a low-cost, nanoscale aerogel insulator. The potential exists to adapt and optimize aerogel-filled structural foam for the cryogenic insulation application, taking advantage of the thermal and mechanical benefits of each component while offering low cost and manufacturability in complex shapes. In Phase I, the feasibility of fabricating aerogel-filled open-cell foam for cryogenic application was demonstrated, initial thermal performance was established, and a path for continued material and structural optimization was developed through design and modeling. In Phase II, Ultramet will again team with Ocellus, a leader in low-cost aerogel fabrication, and Materials Research and Design for design and analysis support. Thermal performance will be characterized at the Cryogenics Test Laboratory at Kennedy Space Center.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government