Agonists of the RIG-I Innate Immune Pathway

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 2R44AI081335-03A1
Agency Tracking Number: R44AI081335
Amount: $2,836,489.00
Phase: Phase II
Program: SBIR
Awards Year: 2011
Solicitation Year: 2011
Solicitation Topic Code: NIAID
Solicitation Number: PA10-123
Small Business Information
219 Terry Ave N. Suite 300, SEATTLE, WA, -
DUNS: 809832558
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 (206) 378-0400
Business Contact
Phone: (206) 378-0436
Research Institution
DESCRIPTION (provided by applicant): Through Phase I studies, we have identified five lead small molecule compounds with drug-like properties that activate innate immune response pathways and inhibit the replication of RNA viruses such as hepatitis C virus (HCV), influenza virus (FLU), and West Nile virus (WNV). There is a tremendous commercial demand for new antiviral products with novel mechanisms of action that target a broad spectrum of viruses. Most previous and ongoing pharmaceutical development programs involve screening for inhibitors of essential virus enzymes, with comparatively little investment in drugs that modulate the host immune response to infection. In this proposal, we focus drug development efforts on the host side of the virus-host interaction in order to discover and develop new antiviral products with novel mechanisms of action that are more effective and less sensitive to virus escape through mutation. In Phase 1, high-throughput screening of a 20,000-compound maximally diverse library, as well as a targeted library that was comprised of small molecules predicted by in silico modeling to bind to the RIG-I receptor, allowed identification of drug-like activators of an IRF-3 responsive promoter. Compound hits were counter-screened for target specificity and cytotoxicity, and validated for IRF-3 activation/nuclear localization, dose-dependent activation of interferon-stimulated gene (ISG)-reporter expression, and the ability to induce endogenous ISG protein expression in native 293 cells. Antiviral, mechanistic, and medicinal chemistry characterization of the hits resulted in the identification of five fully-validated lead compounds suitable for optimization and further pharmaceutical development. Phase 1 lead compounds decrease viralprotein expression, RNA release, and infectious virus production in cell culture models of HCV, WNV and FLU. Genomic profiling demonstrates that lead agonists can activate a discrete antiviral gene program composed of a limited number of relevant innate immune targets. Based upon this initial effort, three Specific Aims are proposed for Phase 2. In Specific Aim 1, we will use strategically designed compound derivatives and biological and physiochemical assays to enhance lead compound potency and antiviral activity and identify lead structural classes and optimized drug leads for further characterization in exploratory tolerability and pharmacokinetic studies. In Specific Aim 2, the mechanism of action and scope of antiviral activity of lead structural classes will be characterized. Finally in Specific Aim 3, we will define the repeat-dose tolerability and in vivo antiviral properties of a small number of optimized drug leads in rodent models in order to support the selection of one lead and one back-up preclinical candidate for further commercial development. Key program innovations include the development of RIG-I-targeted antiviral drugs with a broad spectrum of action and drug-like physiochemical properties. The significance of the program derives from the global burden of viral diseases that may be addressed by these new drug candidates. PUBLIC HEALTH RELEVANCE: We have utilized a unique drug discovery strategy to identify potential new antiviral drugs that work by activating a faster, more potentimmune response to fight off virus infection. Our goal is to optimize lead candidates for further development as antiviral drugs for a variety of viruses, including influenza virus, hepatitis C virus (HCV) and West Nile virus. Because these drugs will activate the natural immune response, they are likely to be more effective and less prone to failure resulting from viral drug resistance.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government