Engineered scaffolds for complex craniomaxillofacial reconstructions

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$849,728.00
Award Year:
2011
Program:
SBIR
Phase:
Phase II
Contract:
2R44DE019979-02A1
Award Id:
n/a
Agency Tracking Number:
R44DE019979
Solicitation Year:
2011
Solicitation Topic Code:
NIDCR
Solicitation Number:
PA10-050
Small Business Information
5400 Carillon Point, Kirkland, WA, 98033-
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
611645313
Principal Investigator:
FRANCESCO MIGNECO
(734) 615-1481
francesco@tissuesys.com
Business Contact:
JIM FITXSIMMONS
(425) 576-4040
jim@tissuesys.com
Research Institution:
Stub




Abstract
DESCRIPTION (provided by applicant): Large mandibular segmental defects resulting from tumor resection, trauma, and congenital anomalies remain one of the most difficult clinical challenges in CMF reconstruction. Autologous tissue grafts and synthetic materials are the current clinical gold standard but suffer from significant drawbacks that make these solutions far from ideal. In particular, prosthetic devices implanted to fill mandibular bone defects and attached to the adjacent host tissues with titaniumplates or screws are prone to failure due to metal fatigue and fracture or bone resorption at the host tissue-metal interface. To compete in the CMF reconstruction market, a degradable biomaterial platform able to act as a carrier for osteobiologics mustbe established. Tissue Regeneration Systems, Inc (TRS) has developed a platform technology to design and fabricate bioactive resorbable coated devices for CMF reconstruction. TRS also completed a SBIR phase I to demonstate the fidelity and reproducibilityof its platform. With this proposal, we will move modular osteoconductive scaffold platforms in two aims: 1) determine the best osteoconductive coating conditions in vitro for cell and protein attachment, and 2) test our CMF scaffolds in a clinical settingto reconstruct large mandibular defects in a large animal model, the Yorkshire pig. Successful completion of this proposal will represent a significant advance in TE reconstruction of mandibular defects, using an innovative modular osteoconductive scaffold. Furthermore, testing in a large pre-clinical animal model will give TRS the data necessary to support a 510K submission for FDA device approval. PUBLIC HEALTH RELEVANCE: Mandibular reconstruction following tumor resection, trauma, and congenitaldefects remains one of the most difficult challenges in craniomaxillofacial (CMF) surgery. Successful reconstruction must simultaneously fill complex defects, sustain chewing forces, and achieve a complete repair of compromised bone tissue. To address these issues, we propose to engineer modular osteoconductive scaffolds for use with intra Operating Room (intraOR) biologics to reconstruct large segmental mandibular defects in a pre-clinical porcine animal model. These bioresorbable scaffolds will address current limitations in mandibular reconstruction associated with the use of metal plates including dehiscence, fatigue fracture, hardware loosening and difficulties in achieving complete aesthetic and functional reconstruction.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government