Ceramic Electron Microscopy Grids for Cell Culturing and Multiscale Imaging

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 2R44GM093511-02
Agency Tracking Number: R44GM093511
Amount: $941,608.00
Phase: Phase II
Program: SBIR
Awards Year: 2011
Solicitation Year: 2011
Solicitation Topic Code: NIGMS
Solicitation Number: PA10-050
Small Business Information
2605 Trade Centre Ave., LONGMONT, CO, -
DUNS: 130993384
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 (352) 328-4444
Business Contact
Phone: (720) 494-8401
Email: swilliams@synkera.com
Research Institution
DESCRIPTION (provided by applicant): Improved supporting technologies for imaging of molecular and supramolecular structures within cells are needed to facilitate cell biology research, and are sought by the National Institute of General Medical Sciences (specifically, its Division of Cell Biology and Biophysics). Multiscale imaging, using cryo-electron tomography (cryo-ET) on supramolecular structures and single molecules, has proven in recent years to be a unique and invaluable method for highthroughputcharacterization of the dynamic 3D architecture of cells. Electron microscopy (EM) grids, used as substrates for supporting the biological and biomolecular specimens being imaged, are a critical component associated with this imaging method. New EM grid technology that decreases sample preparation cost and time, improves sample generation from culturing to freezing for cryo-ET, and increases imaging quality will allow researchers to more efficiently explore cellular architecture, at higher throughput. Synkera proposes a novel class of ceramic EM grids that feature an integrated thin support film that is highly compatible with cell culturing, light microscopy and cryo-ET. The grids will facilitate high-throughput, multiscale imaging of sub-cellular architecture and offer key advantages over state-of-the art products. The grids are also expected to be a competitive alternative in many other EM and culturing applications a 6-month Phase I project successfully demonstrated feasibility of the proposed grids architecture, as well as their potential in culturing, cryo-ET and multiscale imaging. Phase II aims to build on this success by further developing fabrication processes and ceramic EM grids designs, to fully realize the potential for multiscale imaging in functional prototypes. At least four academic partners will aide in this development process. The ultimate goal of the proposed project is a complete line of ceramic EM grids for a broad range of EM applications, from bioimaging to materials characterization.PUBLIC HEALTH RELEVANCE: The project addresses imaging of molecules and cells via cryo-electron tomography (cryo-ET). Specifically, the target application is multiscale imaging via optical microscopy and cryo-ET of cellular, supramolecular and single-molecule structures, for generating 3D models of sub-cellular architecture. The development of a novel class of ceramic-based electron microscopy grids that facilitate this multiscale imaging is proposed. The proposed technology will offer greater capability over state-of-the- art products and help further streamline multiscale cellular imaging by simplifying the specimen preparation process and yielding superior imaging performance.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government