Active Distributed Electrode Array Network for Electrical Stimulation Therapy

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 2R44HD062065-02
Agency Tracking Number: R44HD062065
Amount: $970,262.00
Phase: Phase II
Program: SBIR
Awards Year: 2011
Solicitation Year: 2011
Solicitation Topic Code: NICHD
Solicitation Number: PA10-050
Small Business Information
DUNS: 129360637
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 (859) 879-3718
Business Contact
Phone: (859) 879-3718
Research Institution
DESCRIPTION (provided by applicant): Transcutaneous electrical stimulation applications involving high numbers of stimulated muscles have been an area of growing interest in recent years. customKYnetics has been approached by research groups and stimulation application developers requesting high channel count stimulation devices for use in their spinal cord injury rehabilitation research studies and products. Existing devices do not offer the features and/or number of stimulation channels required for these applications. Such high channel count devices are often cost prohibitive due to the size and complexity of the stimulator and the limited market for any particular configuration. Devices that are available lack the technological capability to coordinatethe activity of the electrode pairs in an application-specific manner. Such applications have also lacked clinical acceptance because managing the large number of wires has been burdensome and impractical. We propose Active Distributed Electrode Array (ADEA) technology, which offers two novel features that address these problems: network architecture and end-user programmability. With these features, the ADEA system will be fully configurable (both in hardware and software) by the application developer (i.e., researcher, specialized clinician, or OEM company) to create application-specific stimulation/sensing networks and stimulation regimens. No end-user programming experience will be required. We successfully completed Phase I work, including feasibility demonstration of the node concept. The goals of this Phase II SBIR project will be to develop clinically viable stimulation and sensing nodes, an ADEA stimulator/controller module, and an end-user programming suite, and to demonstrate efficacy of the technology. The target markets for this device will be specialized clinics, research groups, and OEM companies. The target price for the system will be 3000 in volume for an 8-channel configuration (OEM market). PUBLIC HEALTH RELEVANCE: The proposed work may benefit public health through development of a clinically viable electrical stimulation technology for use in myriad rehabilitation applications. Compared to existing devices and techniques, the technology may improve efficacy, availability, ease ofuse, and reduce cost of the therapeutic interventions requiring high numbers of muscles to be activated using electrical stimulation in a well controlled/coordinated fashion.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government