You are here

Dynamic Phase Imaging Interference 4D Microscope System

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 2R44RR028170-02
Agency Tracking Number: R44RR028170
Amount: $999,013.00
Phase: Phase II
Program: SBIR
Solicitation Topic Code: NCRR
Solicitation Number: PA10-050
Solicitation Year: 2011
Award Year: 2011
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
TUCSON, AZ 85706
United States
DUNS: 111037482
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 (520) 294-5600
Business Contact
Phone: (520) 294-5600
Research Institution

DESCRIPTION (provided by applicant): This project will develop a dynamic quantitative phase-imaging interference 4D microscope system to enable creating phase image movies and quantifying motion of live cells and cellular processes in vitro using harmlesslight levels without the need for adding contrast or labeling agents. The primary use of this microscope is to study the structure and mechanics of cells, cellular processes and tissues. This interference microscope will enable looking at cellular morphology, cellular development and structures within cells and tissues over periods of time. It is intended to have a flexible design that enables options of different magnifications, resolutions, and wavelengths. The Phase II project focuses on developing a production prototype for a commercial dynamic phase imaging interference microscope system using interchangeable interference objectives and low coherence sources with fiber delivery. Polarization states will be used to differentiate object and reference beams. Technology originally developed for dynamically measuring the seeing quality of large telescopes in situ will be utilized for imaging on the microscopic level. This technology utilizes a pixilated single-shot phase-measurement camera to enable instantaneous quantitative determination of optical phase and refractive index variations in real time to create movies of dynamic motions. Goals for Phase II include 1) designing, building and testing a production prototype microscope system with multiple magnifications, 2) development of software and algorithms to display optical thickness data in real time relative to a background surface and capture bursts of data to quantify cellular motion, morphology and volume, 3) demonstrating quantitative measurements on dynamic living cells at multiple beta sites with research partners, and to obtain written user feedback for implementation in Phase III. PUBLIC HEALTH RELEVANCE: This dynamic quantitative phase-imaging technology implemented within an interferometricmicroscope system represents a key element in advancing the ability to rapidly image tissues, cells, and cellular components in real-time without the need for toxic contrasts agents using harmless light levels to observe cellular processes in living biological objects, and track changes among and within cells. This instrument will create dynamic 4D phase image movies of cellular events for studying in vitro cellular structure and morphology, motion, motility and mechanics.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government