Nb3Sn Wound Superconducting Undulators for Synchrotron Light Sources

Award Information
Agency:
Department of Energy
Branch
n/a
Amount:
$150,000.00
Award Year:
2011
Program:
SBIR
Phase:
Phase I
Contract:
DE-FG02-11ER90118
Agency Tracking Number:
97132
Solicitation Year:
2011
Solicitation Topic Code:
14 c
Solicitation Number:
DE-FOA-0000413
Small Business Information
Hyper Tech Research, Inc
539 Industrial Mile Rd, Columbus, OH, 43228-2412
Hubzone Owned:
Y
Socially and Economically Disadvantaged:
N
Woman Owned:
N
Duns:
014152511
Principal Investigator:
Xuan Peng
Dr.
(614) 481-8050
xpeng@hypertechresearch.com
Business Contact:
Lawrence Walley
Mr.
(614) 481-8050
elwalley@hypertechresearch.com
Research Institution:
Stub




Abstract
In Phase I, we propose to model, design and wind, using state-of-the-art tube-type Nb3Sn wire, a short demonstration undulator in the form of a planar coil set, and to measure its electromagnetic properties in a variable temperature cryostat paying particular attention to temperatures above 4.2 K. Winding schemes will be evaluated best suited to Nb3Sn wire, but a single piece length is favored. Paying attention to the request for the development of coil manufacturing techniques, we plan to make extensive use of both electromagnetic and thermal FE modeling. Together, they will enable us to optimize the use of iron and copper in the undulator structure, (i) iron for maximizing the bore field for a given winding current density and (ii) copper as an essential component of the cryogenic thermal management system.Commercial Applications and Other Benefits: The coil design/winding experience developed under this program will have wide ranging benefits. The high Jc, fine filament, Nb3Sn strand could be suitable for the windings of high field accelerator magnets and magnets for advanced fusion applications. The Nb3Sn strands have relatively high Tc (thermal margin), hence radiation tolerance, and its use in wigglers and undulators may lead to the development of more potent synchrotron light sources. As radiation sources, these machines find use in research, medicine, and industry. According to a U.S. EPA article, more than 97% of the 15,000 accelerators in use around the world have commercial applications, e.g. in diagnosing and treating cancer, locating oil and minerals in the earth, processing semiconductor chips for computers, determining the age of materials through radiocarbon dating and sterilizing medical equipment and food products

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government