Ultra-High Energy X-Ray Optics for Improved Assay of Nuclear Materials

Award Information
Agency: Department of Energy
Branch: N/A
Contract: DE-FG02-11ER90085
Agency Tracking Number: 97558
Amount: $149,912.00
Phase: Phase I
Program: SBIR
Awards Year: 2011
Solicitation Year: 2011
Solicitation Topic Code: 52 b
Solicitation Number: DE-FOA-0000413
Small Business Information
15 Tech Valley Drive, East Greenbush, NY, 12061-4134
DUNS: 780681938
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Danhong Li
 (518) 880-1500
Business Contact
 Matthew Cusack
Title: Mr.
Phone: (518) 880-1500
Email: mcusack@xos.com
Research Institution
Current nuclear material measurement techniques are limited in the ability to assess the ratio of actinides such as curium (Cm) and plutonium (Pu) present in the sample from the beginning to the end of processing. As a result, it is difficult to discern whether nuclear material is safeguarded correctly, i.e. is it being diverted? The opportunity addressed is a substantial improvement in measurement sensitivity for global safeguards of nuclear material, which directly addresses a primary objective of the DOE global safeguards program. Several approaches for measuring Pu and Cm are used in processing and reprocessing plants today, including gamma ray and neutron counting. There is no elemental discrimination possible with neutron measurements and the gamma-ray background from the fission-product materials masks accurate determination of the Cm content. XOS proposes to develop an ultra high-energy optic-enabled x-ray fluorescence (XRF) technique that is fit-for-purpose in improving measurement scrutiny at quantification by greater than 10X. The team will demonstrate the feasibility of the XRF optics in Phase I, and assemble a prototype in Phase II that will be used for direct measurement of nuclear materials, and as a complimentary method for existing measurement techniques. The Phase I optics development requires a technology development in three areas where XOS is uniquely qualified: optics materials, optics cutting and polishing, and optics bending and forming. The high-energy optics developed in this proposal can also be used in commercial nuclear-power generation applications for fuel processing, storage, and waste management. Further, an XRF capability at this high energy is applicable for consumer product safety markets and identification of toxins, as well as nuclear medicine applications.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government