Advanced ICRF Antennas for Fusion Energy Devices

Award Information
Department of Energy
Award Year:
Phase II
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
67 b
Solicitation Number:
Small Business Information
Plasma Processes, Inc.
4914 Moores Mill Road, Huntsville, AL, 35811-1558
Hubzone Owned:
Minority Owned:
Woman Owned:
Principal Investigator:
John O'Dell
(256) 851-7653
Business Contact:
Angela Hattaway
(256) 851-7653
Research Institution:

Abstract Ion cyclotron range of frequency (ICRF) power is anticipated to be a primary auxiliary heating source in next step tokamak experiments like ITER. From a technological perspective, electrical breakdown is a significant challenge for ICRF utilization in present experiments and will become more challenging for future devices like ITER and other reactors. An ICRF system utilizes an antenna to couple power to the plasmas. Current antennas use materials with high conductivity, like copper, where the copper has been deposited onto a structural material like Inconel 625 or stainless steel. However, coppers low melting temperature and deteriorating mechanical properties at elevated temperatures result in electrical breakdown of the antenna and strong material displacement. ICRF antenna performance could be significantly improved by replacing the copper coating with a refractory metal such as tungsten. During this investigation, innovative coating techniques are being developed to enable the deposition of dense, high purity, well-adhered tungsten coatings on ICRF antennas. Testing of tungsten coatings produced during the Phase I effort has shown considerable promise. For example, electrical breakdown testing of tungsten coated samples at MIT has shown up to a 35% improvement in power handling capability as compared to copper reference samples with a similar surface finish. During Phase II, the tungsten coatings will be optimized and a tungsten coated ICRF antenna will be produced and tested in Alcator C-Mod to determine antenna performance in a tokamak environment. The antenna & apos;s voltage and power limits under various conditions will be characterized and compared to a traditionally copper coated antenna. Commercial Applications and Other Benefits: The development of dense, well-bonded refractory metal coatings on Inconel and stainless steel substrates will enable the fabrication of advanced ICRF antennas. Other applications that will benefit from the technology to be developed include aerospace, defense, propulsion, power generation, semiconductor, crucibles, heat shields, x-ray and sputtering targets, wear and corrosion protection coatings.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government