Marx Modulator Optimization for Advanced Accelerators

Award Information
Agency: Department of Energy
Branch: N/A
Contract: DE-FG02-10ER85788
Agency Tracking Number: 94706
Amount: $994,133.00
Phase: Phase II
Program: SBIR
Awards Year: 2011
Solitcitation Year: 2011
Solitcitation Topic Code: 65 d
Solitcitation Number: DE-FOA-0000508
Small Business Information
Diversified Technologies, Inc.
35 Wiggins Avenue, Bedford, MA, 01730-2314
Duns: 602959579
Hubzone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Rosa Ciprian
 Dr.
 (781) 275-9444
 ciprian@divtecs.com
Business Contact
 Michael Kempkes
Title: Mr.
Phone: (781) 275-9444
Email: kempkes@divtecs.com
Research Institution
 Stub
Abstract
The next generation of particle accelerators will require large numbers of RF cavities, producing field gradients undreamt of a dozen years ago. The next frontier is high energy, short pulse modulators, continuing the technical thrust begun under recent colliders and numerous X-Band accelerator designs. Modulators to drive the klystrons for these new accelerators must meet aggressive requirements for pulse risetime, flatness, and repeatability requirements, at hundreds of kV. For short-pulse modulators, the Marx topology provides a means to achieve astounding risetimes and flattop control that are simply not available with hybrid (switch / pulse transformer) topologies. The basic proof of principle of solid-state Marx architectures has been demonstrated by several organizations, but deployable solutions for high voltage, short-pulse accelerators have not been available as of yet. In our Phase I effort, we have demonstrated a prototype Marx modulator design with the performance, affordability, and reliability necessary for this new class of accelerators. This proposed effort is focused on advancing the Marx modulator design developed in Phase I from a prototype to a fully functional, installed system for the 500 kV operation of a magnicon tube. Commercial Applications and Other Benefits: A key benefit of this SBIR effort, therefore, is to reduce the cost of solid-state modulator designs significantly, allowing them to finally undercut the cost of conventional designs, while providing higher levels of pulse control, reliability, and efficiency. RF systems, primarily the klystrons and modulators, typically account for over one-third of the construction cost of a new accelerator. A significant reduction in modulator costs, therefore, has an appreciable impact on the price tag for any accelerator.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government