A New Polymer from Bio-Oil

Award Information
Environmental Protection Agency
Award Year:
Phase I
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
TDA Research, Inc.
12345 W. 52nd Ave., Wheat Ridge, CO, -
Hubzone Owned:
Minority Owned:
Woman Owned:
Principal Investigator:
Silvia Luebben
(303) 940-2317
Business Contact:
John Wright
(303) 940-2300
Research Institution:
"Project Opportunity The vast majority of today’s polymers, plastics, foams, synthetic fiber, adhesives, and coatings are made from oil, which is non-renewable, non-biodegradable, depends in large part on foreign sources, is highly sensitive to regional conflicts, and has a large carbon footprint. Unfortunately, today’s selection of renewable polymeric materials is extremely limited and most are low-performance, low-value materials. Thus the objective of this research is to develop a renewable high-performance engineering thermoplastic to replace current petroleum-based materials. Increasing the use of renewable materials will reduce the carbon footprint on the products we use, the challenges associated with waste disposal, and the risk of accumulation of persistent chemicals. It will give future generations alternative materials to make plastic, fibers and coatings when oil will become scarce. Project Objectives Fast pyrolysis is one of the thermal processes that are being developed to make biofuel from biomass. It produces a liquid that can be used both as fuel and a source of chemicals. Fast pyrolysis could be a cost-competitive process if (as with petroleum) it can be fractionated and converted both to fuels and high-value chemicals. The objective of this Phase I SBIR project is to synthesize and characterize a new family of biomimetic polymers that are made from an economic, non-toxic and renewable monomer. This monomer is a major component (up to 17% wt.) of the bio-oil that is obtained from the fast pyrolysis cellulose. We expect that the proposed family of polymers will have exceptional mechanical properties and good processing characteristics and could be used as bio-derived alternative to replace a wide range of petroleum based thermoplastic polymers. The proposed polymers will also be environmentally friendly and could be engineered for either biodegradability or have long-term stability. Description of Effort During the Phase I project we plan to synthesize various stereo-chemical forms of the proposed polymer via chemical and fermentation methods, and characterize the chemical, physical and mechanical properties of the products. We will also evaluate their degradation rate under hydrolytic and enzymatic conditions. "

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government