Quantum-Confined Nanocrystal Materials for Anti-Stokes Optical Coolers

Award Information
Agency: Department of Defense
Branch: Air Force
Contract: FA9550-11-C-0084
Agency Tracking Number: F10B-T02-0275
Amount: $99,990.00
Phase: Phase I
Program: STTR
Awards Year: 2011
Solicitation Year: 2010
Solicitation Topic Code: AF10-BT02
Solicitation Number: 2010.B
Small Business Information
Voxtel Inc.
12725 SW Millikan Way, Suite 230, Beaverton, OR, -
DUNS: 124348652
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Ngoc Nguyen
 Senior Scientist
 (971) 223-5646
 georgew@voxtel-inc.com
Business Contact
 George Williams
Title: President
Phone: (971) 223-5646
Email: georgew@voxtel-inc.com
Research Institution
 University of Oregon
 David Tyler
 1253 University of Oregon
Eugene, OR, 97403-1253
 (541) 346-4649
 Nonprofit college or university
Abstract
ABSTRACT: Nanocrystals (NCs) offer many potential benefits for optical refrigeration; these quantum-confined materials have discrete energy levels, large optical transition dipole moments, and high photoluminescence quantum efficiency. Using well-characterized upconverting ion-doped metal oxide NCs and core-shell semiconductor nanocrystals as a baseline, a design of experiments (DOE) will be conducted to optimize the coupling and population of the energy carriers (photons, electrons, and phonons), including the photon-exciton and exciton-phonon couplings, the ion-dopant concentration, the phonon density of states, the photon population, the host material and size, the core-shell architectures, the NCs"surface properties, and the ion doping concentration. This will make efficient optical cooling possible and eliminate non-radiative Auger-recombination paths. The coupling and populations will be studied using time-resolved photoluminescence (TRPL) and photoluminescence excitation (PLE), femtosecond pulse probe spectroscopy, and ultraviolet photoelectron spectroscopy (UPS) and X ray photoelectron spectroscopy (XPS) measurements to characterize the NC materials so that the nanostructured materials can be fabricated and demonstrated in working optical cryocoolers capable of cooling power>200 mW. In Phase II, the macroscopic properties of the device will be optimized in a series of fiber optics and optical cavities, so that improvements in efficiency and mass can be demonstrated for space applications. BENEFIT: While the full capabilities, performance, and cost for this technology are not yet fully understood, a low-cost and high-performance cooling system capable of being conformably coated onto a substrate has the potential to unleash a new era in electronics, communications, and sensors. Additionally, the same material sets can be used for thermoelectric generation. We foresee the following cooling applications as high-value target markets: military infrared sensors, silicon chip industry, and optoelectronics.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government