You are here
Reconfigurable All Optical Information Processing
Title: VP of Operations
Phone: (614) 917-7202
Email: vkochergin@microxact.com
Title: President&CEO
Phone: (540) 392-6917
Email: phines@microxact.com
Contact: Kang L Wang
Address:
Phone: (310) 825-1609
Type: Nonprofit College or University
ABSTRACT: The team of MicroXact, Inc., UCLA, UC Irvine and Carnegie Mellon University proposes to engineer revolutionary nonvolatile reconfigurable plasmonic gates for information processing on the basis of ultrafast plasmon-enhanced all-optical magnetization switching. This unique approach allows one to program any gate between several different states at very high modulation rates and low power consumption, thus allowing tremendous opportunities to engineer all-optical Field Programmable Gate Arrays. Gates modulation is nonvolatile and one can use the proposed solution to built reconfigurable memory arrays. The proposed reconfigurable gates, will enable optical information processing engines with unmatched speed, functionality, integration density and low power dissipation. Specifically to the Air Force, the proposed solution can provide integrated processing platforms for Unmanned Aerial Vehicles, where the processing speed and integration density are critical. In Phase I the team fully validated the proposed approach by experimentally demonstrating optical magnetization switching at 100 times lower laser fluence to pulse duration ratio and predicted 10,000 fold enhancement in appropriate structures. In Phase II the team will experimentally demonstrate 10,000 fold enhancement of mentioned ratio in plasmonic nanostructures and will fabricate and demonstrate nonvolatile reconfigurable optical gate operating at 80GHz frequency. In Phase III MicroXact will commercialize the proposed technology. BENEFIT: The proposed nonvolatile reconfigurable optical gate technology can greatly benefit existing and emerging DoD missions, where fast processing of large volumes of data is needed (remote sensing, e.g., hyperspectral imaging etc.). Also, the all-optical ultrafast generation of strong, highly localized magnetic fields will find applications in chemical sensing (such as explosive detection, biological and chemical warfare agent detecting/identification, etc.). The proposed technology is expected to find commercial applications in next generation signal processors and FPGAs, magnetic memory, as well as material characterization systems. Unique performance characteristics of the proposed solution will ensure rapid commercialization of the proposed technology.
* Information listed above is at the time of submission. *