Transition-State Analogue Inhibitors of Dihydrofolate Synthetase for MDR/XDR TB

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R43AI088812-01A1
Agency Tracking Number: R43AI088812
Amount: $557,508.00
Phase: Phase I
Program: SBIR
Awards Year: 2011
Solicitation Year: 2011
Solicitation Topic Code: NIAID
Solicitation Number: PA10-123
Small Business Information
DUNS: 114845659
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 (253) 833-8009
Business Contact
Phone: (253) 833-8009
Research Institution
DESCRIPTION (provided by applicant): Mycobacterium tuberculosis (Mtb) is a notorious pathogen whose increasing resistance to antibiotics and heightened lethality in combination with AIDS makes it a major health concern worldwide. The selection and spread of multiple drug resistant Mtb continued for decades leading to selection and spread of two operationally distinct forms, multiple drug resistant (MDR-TB) and extensively drug resistant (XDR-TB). The estimate for global MDR-TB and XDR-TB cases for 2007 were500,000 and 40,000 respectively. Given the worldwide epidemic in tuberculosis and emergence of drug resistant strains, eradicating MDR-TB and XDR-TB using the current armamentarium of antimicrobials is untenable. Thus, the discovery of new types of anti-Mtb drugs acting on novel drug targets with no cross-resistance to any existing drugs is urgently needed to combat MDR/XDR-TB. The potential impact of a new antimicrobial to treat MDR/XDR-TB would be expected to be major, potentially affecting hundreds of thousands of patients. Targeting the folate biosynthetic pathway is an established and proven therapeutic strategy in a variety of diseases including cancer, bacterial infections and parasitic infections. In humans, folate requirements must be met entirelyfrom dietary sources. In contrast, Mtb and other bacteria synthesize folates de novo and have enzymes that catalyze the assembly of folate that are absent from humans. One such enzyme in Mtb is dihydrofolate synthetase (Mtb-DHFS) that catalyzes the addition of glutamate to dihydropteroate (DHP) to produce dihydrofolate (DHF). Accordingly, humans completely lack DHFS, but it is essential for the growth of Mtb. Targeting DHFS is therefore a highly attractive strategy for developing therapy for treating MDR/XDR-TB, because (1) DHFS is not involved in cross- resistance to any existing anti-Mtb drugs, and (2) it is predicted that bacterial sanctuary sites could be effectively sterilized using high doses of a DHFS inhibitor to achieve bactericidal concentrations without causing dose-limiting toxicities to the patient. Based on the known catalytic mechanism and structural models of the catalytic and DHP-binding sites in Mtb-DHFS, it is our hypothesis that we will be able to develop potent and selective transition-state analogue inhibitors. Thus, the two-year experimental plan in this SBIR Phase 1 proposal aims to jumpstart the discovery campaign to identify potent and selective inhibitors of Mtb-DHFS. The hypothesis we will test during the 2-year Phase 1 segment is that based on the known catalytic mechanism and structural models of the catalytic and DHP-binding sites, we will be able to develop potent and selective transition-state analogue inhibitors to Mtb-DHFS. PUBLIC HEALTH RELEVANCE: Multidrug-resistant tuberculosis and extensively drug resistant tuberculosis are a major health concern worldwide. The proposed DHRS inhibitors may lead to effective new treatments for resistant tuberculosis.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government