You are here

Development of a novel second-generation pan-filovirus subunit vaccine

Award Information
Agency: Department of Health and Human Services
Branch: National Institutes of Health
Contract: 1R43AI094829-01
Agency Tracking Number: R43AI094829
Amount: $600,000.00
Phase: Phase I
Program: SBIR
Solicitation Topic Code: NIAID
Solicitation Number: PA10-123
Timeline
Solicitation Year: 2011
Award Year: 2011
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
Gaithersburg, MD -
United States
DUNS: 601000750
HUBZone Owned: No
Woman Owned: No
Socially and Economically Disadvantaged: No
Principal Investigator
 KELLY WARFIELD
 (240) 454-8936
 kelly@integratedbiotherapeutics.com
Business Contact
 MAHTAB HEKMAT
Phone: (240) 454-8935
Email: mahtab@integratedbiotherapeutics.com
Research Institution
 Stub
Abstract

DESCRIPTION (provided by applicant): Filoviruses, Ebola and Marburg, are causative agents of sever hemorrhagic fever in humans with case-fatality rates exceeding 88%. Filoviruses, designated as category A select agents by the Centers for Disease Control and Prevention, are considered potential biowarfare agents and therefore a serious threat to public health and national security. Furthermore, outbreaks in Africa have been on the rise in the past 15 years. There are currently no vaccines or therapeutics available for treatment or prophylaxis of filovirus hemorrhagic fever. Most current vaccine platforms under development utilize viral vectors such as adenovirus or vesicular stomatitis virus. While some of these approaches may prove to be good post-exposure treatment options, they are problematic as vaccines due to pre-existing vector immunity in a sizable portion of the population (in the case of adenovirus) and/or safety concerns in particular in immune-compromised populations (in the case of live viral vectors). An additional challenge is development of a vaccine that can convey broad protection to different pathogenic species and strains of filoviruses without the need for blending multiple individual vaccines. To date no cross protective vaccination strategy has been described that can protect against Sudan and Zaire Ebolaviruses or between an Ebola and a Marburg virus. The objective of this proposal is to develop a vaccine platform based on purified proteins that (i) is easy to produce, and (ii) provides broad protection against multiple species of filoviruses. In this proposal, relying on a rational and structure-based antigen design and strong preliminary data, we propose to develop a protein-based vaccine based on an engineered antigen in which the highly conserved receptor binding region of the viral glycoprotein is exposed as a result of deletion of highly glycosylated mucin-like domain. Our preliminary studies using this approach showed, for the first time, cross protection between Ebola and Marburg viruses. In Specific Aim 1 we will produce engineered antigens for Zaire and Sudan Ebolaviruses as well as Lake Victoria Marburgvirus using a baculovirus/insect cell expression system. The vaccine preparations will be thoroughly characterized. In Aim 2 we will evaluate the immunogenicity of the new vaccine platforms in comparison to a first generation virus like particle (VLP) vaccine currently under development in our group. The immunogenicity study will include cross reactive total and neutralizing antibodytiters between all strains as well as evaluation of the T cell responses. Homologous and heterologous efficacy against lethal challenge will be tested initially in mice and then in the more stringent guinea pig model with the goal of demonstrating pan Filovirus protective efficacy. A strong team of scientists with decades of cumulative experience in filovirology, vaccine development, and animal studies under biocontainment, has been assembled to perform this important project. Upon completion of this PhaseI SBIR we anticipate to have identified a single vaccine candidate that is easy to produce and capable of protecting against different Filovirus strains as divergent as Zaire and Marburg. Demonstration of the vaccine candidate efficacy in nonhuman primates and further preclinical development can be pursued in a subsequent Phase II project. PUBLIC HEALTH RELEVANCE: Filoviruses, Ebola and Marburg, are among the deadliest viruses and can cause severe hemorrhagic fever in humans. There is serious concern that these viruses can be used as a bioterror agent. There is currently no vaccine or drugs available for prevention or treatment of Filovirus infections. In this proposal, using a novel approach, we seek to develop a vaccine that is easy to produce and would protect against several strains of filoviruses.

* Information listed above is at the time of submission. *

US Flag An Official Website of the United States Government