A Machine Learning Tool for Image Quality Assessment through Prediction of Iris Recognition Success

Award Information
Agency:
Department of Homeland Security
Branch
n/a
Amount:
$732,805.07
Award Year:
2012
Program:
SBIR
Phase:
Phase II
Contract:
D12PC00477
Award Id:
n/a
Agency Tracking Number:
DHS SBIR-2011.2-H-SB011.2-005-0011-II
Solicitation Year:
2011
Solicitation Topic Code:
H-SB011.2-005
Solicitation Number:
n/a
Small Business Information
12330 Perry Hwy, Wexford, PA, 15090-8319
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
965516292
Principal Investigator:
Michael Happold
happ@rhobotika.com
Business Contact:
Michael Happold
happ@rhobotika.com
Research Institute:
n/a
Abstract
In Phase I we developed a machine learning method for predicting match score errors in iris imagery to determine the quality of the image. We now propose to develop a flexible and configurable tool for creating, refining, and applying such a match score predictor to any image quality assessment problem where a training signal can be identified. The tool will enable users to supply ground truth for image labeling through an intuitive plugin. It will provide a set of feature plugins for feature extraction while allowing users to add their own. It will provide users with access to the training process for the image quality assessment through a training plugin. It will offer automatic feature selection to reduce the feature set to the most efficacious through a feature selection plugin. And it will provide extensive analysis capabilities to determine the effectiveness of the image quality assessor on test data. Scripting support will allow the user to invoke our algorithms without need for the GUI if desired. Such a flexible image quality assessment system will have application beyond iris recognition to other areas in biometrics, such as face recognition, but also to domains such as stereovision, visual odometry, and general object recognition. Our work will take this technology to TRL 4 toward TRL 5 through integration of commercial segmentation software, testing on realistic data, and interfacing with an iris imager to simulate the target environment.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government