High Fidelity Synthesis of Dynamic Social Networks using Measurement-based Calibration

Award Information
Agency: Department of Defense
Branch: Defense Advanced Research Projects Agency
Contract: W31P4Q-12-C-0015
Agency Tracking Number: 11SB2-0095
Amount: $100,000.00
Phase: Phase I
Program: SBIR
Awards Year: 2011
Solicitation Year: 2011
Solicitation Topic Code: SB112-004
Solicitation Number: 2011.2
Small Business Information
15400 Calhoun Drive, Suite 400, Rockville, MD, -
DUNS: 161911532
HUBZone Owned: N
Woman Owned: Y
Socially and Economically Disadvantaged: N
Principal Investigator
 Yalin Sagduyu
 Research Scientist
 (301) 294-5267
Business Contact
 Mark James
Title: Director, Contracts&Proposals
Phone: (301) 294-5221
Email: mjames@i-a-i.com
Research Institution
We propose to develop a high fidelity approach of synthesizing measurement-calibrated dynamic social networks. Social network research needs access to realistic graph datasets for testing social network theory and developing network algorithms. However, the available social network data are either typically small or cannot be readily shared due to privacy issues. To address these challenges, a unifying robust framework is proposed to incorporate novel techniques for high fidelity synthesis of social network data with dynamic graph measurement calibration. Online social network (OSN) data will be leveraged to form social interaction graphs. This approach provides the flexibility to capture link formations dynamically as functions of interaction intensities by adding temporal dynamics. We propose to apply measurement-based calibration of diverse graph models. Different network analytical functions (including user attributes, interaction, subgraph populations and temporal variations) can be represented by statistical time-varying descriptions in these graph models. Network synthesis results will be thoroughly evaluated in terms of similarity with OSNs by using diverse fidelity criteria such as statistical metrics, application-level benchmarks and geometric/topological properties. The accuracy-complexity trade-offs in multi-dimensional fidelity objectives will be balanced by introducing a closed-loop control mechanism that can automatically update model selection and optimize parameters in graph fitting.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government