Advanced Multi-Frame Blind Deconvolution for Imaging in Daylight and Strong Turbulence Conditions

Award Information
Agency:
Department of Defense
Branch
Air Force
Amount:
$99,794.00
Award Year:
2011
Program:
SBIR
Phase:
Phase I
Contract:
FA9451-11-M-0026
Agency Tracking Number:
F103-017-0617
Solicitation Year:
2010
Solicitation Topic Code:
AF103-017
Solicitation Number:
2010.3
Small Business Information
Hart Scientific Consulting International LLC
5434 E. Burns St., Tucson, AZ, -
Hubzone Owned:
N
Socially and Economically Disadvantaged:
N
Woman Owned:
N
Duns:
828069190
Principal Investigator:
E. Hege
Senior Scientist
(520) 907-1857
keith.hege@hartsci.com
Business Contact:
Michael Hart
President
(520) 419-6401
michael@hartsci.com
Research Institution:
Stub




Abstract
We will develop new computational techniques to extend the reach of large ground-based optical systems, enabling high resolution imaging of satellites under daylight conditions. Current state-of-the-art systems, such as the 3.6 m AEOS telescope, dramatically underperform in such conditions because of strong turbulence generated by solar heating. Our approach will exploit a priori physical constraints on the imaging process that have hitherto not been incorporated or not fully exploited in MFBD algorithms. The new algorithm, which may be used with seeing-limited data or as an adjunct to partial compensation with adaptive optics, will restore imaging to the diffraction limit even under the extreme conditions of daylight observing. We will develop a numerical simulation to explore the added value of the following constraints: * Exploitation of temporal coherence in high-cadence images through an extension to a multi-layer frozen flow turbulence model. * Inclusion of simultaneous wave-front sensor information. * Constraints imposed by ratios of image spectra and by observed"zeros"in the moduli of spectra of the object and point-spread functions. * Constraints imposed through polarization and wavelength diversity imaging, and the use of multiple telescopes. In addition, we will where possible assess the performance of each constraint by evaluating the Cramer-Rao lower bounds on the variance of estimated parameters. BENEFIT: Benefits to the government are the ability to make high resolution images of satellites from ground-based optical surveillance facilities even in daylight conditions. This dramatically reduces the typical wait time to acquire an observation of a particular satellite since it relieves the requirement to wait for a particular geometrical configuration with respect to the sun. Commercial applications include: * Extending the sensitivity and range of airborne EO/IR ISR systems. * Post-processing of astronomical images taken with partial compensation using adaptive optics, thus allowing higher resolution observations at shorter wavelengths. * Image sharpening in the movie and TV industry.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government