Satellite Optical Backplane

Award Information
Agency:
Department of Defense
Branch
n/a
Amount:
$99,995.00
Award Year:
2011
Program:
SBIR
Phase:
Phase I
Contract:
FA9453-11-M-0109
Award Id:
n/a
Agency Tracking Number:
F103-097-1057
Solicitation Year:
2010
Solicitation Topic Code:
AF103-097
Solicitation Number:
2010.3
Small Business Information
51 East Main Street, Suite 203, Newark, DE, -
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
071744143
Principal Investigator:
Ahmed Sharkawy
Director of Photonic Applications
(302) 456-9003
sharkawy@emphotonics.com
Business Contact:
Eric Kelmelis
CEO
(302) 456-9003
kelmelis@emphotonics.com
Research Institute:
Stub




Abstract
ABSTRACT: Optical interconnects are the natural choice for interconnecting different chips when current interconnect technologies cannot fulfill current and future system requirements. Examples of optical interconnect architectures are free-space multistage interconnect, optical fiber interconnect, and thin film polymer waveguide-based optical interconnect. While all these architectures were successfully capable of satisfying the requirements for an optically interconnected system, the size they occupy is considerably large to be integrated on a chip-level optical system, especially with the minimum feature size of chip shrinking one year after the other. Nano-scale optical interconnects are now needed to satisfy future interconnect needs, since they will not only meet system requirements but will also occupy a size comparable to the interconnected chips. Typical Avionics Networks Requirements include; Many Different I/O Types,- RF, Analog, Digital, Discrete & Timing Strobes,- EMI Problems in Mixed Signal Environment, Many Different Network Media / Connectors Coaxial, TSP, Copper Cable, F/O, Backplane Traces/Vias, Many High Bandwidth/High Frequency Channels Avionics Modules are Connector Bound, Still Desire 2-Level Line-Replaceable Modules, Sensors Located Throughout Airframe, Coaxial Cable Has High Signal Losses/Distortion, Many Pt-to-Pt Cables Reduce Manufacturing Repeatability, Decrease Reliability/Effective Diagnostics. What is needed is a common network that can satisfy all connectivity requirements of an avionics suite, single channel, and single connector. Chip-Scale optical switching fabric can provide this universal avionics network if specific component, cost & packaging challenges can be overcome! BENEFIT: We intend to market a product based on the final device as part of the STTR program. We anticipate our initial market to be government and military applications but we will secondarily bring the final product to the commercial market. There are many groups that will benefit from this technology including the DoD, satellite TV and radio broadcasters, and private space companies. This platform will be useful in military applications ranging from communications to missile guidance to long-range imaging. Additionally, we believe that this device will convince more people to utilize the proposed chip-scale switch fabric in their designs, as this novel platform will greatly improve performance and open the door for many new applications.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government