Large area low cost manufacturing process for precision diffraction gratings with very small line-edge-roughness (LER) and defect-free surface coverin

Award Information
Agency:
Department of Defense
Branch
n/a
Amount:
$99,981.00
Award Year:
2011
Program:
SBIR
Phase:
Phase I
Contract:
FA8650-11-M-1080
Award Id:
n/a
Agency Tracking Number:
F103-173-2469
Solicitation Year:
2010
Solicitation Topic Code:
AF103-173
Solicitation Number:
2010.3
Small Business Information
1 Deer Park Drive, Suite O, Monmouth Junction, NJ, 08852
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
108972048
Principal Investigator:
Chong Huang
Product Development Manager
chonghuang06@yahoo.com
Business Contact:
Larry Koecher
Chief Operation Officer
(732) 355-1600
lkoecher@nanonex.com
Research Institution:
n/a
Abstract
We propose a large area low cost manufacturing process for diffraction gratings with very small line-edge-roughness (LER) and defect-free surface using self-perfection by liquefaction (SPEL) and nanoimprint lithography (NIL). The manufacturing process is capable of producing diffraction gratings covering wavelength ranging from UV to LWIR. The manufacturing process starts with making a master grating template by scanning beam interference lithography (SBIL) and reactive ion etch (RIE). Then, the master grating template is duplicated to have many intermediate templates by high resolution NIL and RIE. The gratings on intermediate templates are further perfected by SPEL to greatly reduce LER and remove surface defect. Simultaneously in SPEL process, the grating profile is changed from trapezoid to sinusoidal, which is desired profile of diffraction gratings. By using carefully developed SPEL process, the template will have nearly perfect grating lines with very small LER, defect-free surface and desired sinusoidal profile. The template will be imprinted to replicate these nearly perfect gratings onto end-product substrate. NIL using Air Cushion Press (ACP) will be used to replicate these gratings faithfully without degrading its quality. The large area low cost manufacturing capability of NIL using ACP will significantly reduce cost of diffraction gratings made by this process. BENEFIT: Proposed works provide a manufacturing path to produce precision large area diffraction gratings at affordable cost to end user. In general, any application that needs a large area diffraction grating with superb spectrum performance will be benefited from this development. In foreseeable future, military surveillance and guided weapon system will likely take benefits from this development. By adding a large area diffraction grating together with optical detector with arrayed pixels, it becomes possible to obtain target images within a narrow spectrum band. The narrow spectrum imaging and band selection capability will tremendously improve performance of target finding, tracking, and identification. This means fast, accurate, and reliable battlefield surveillance and smarter guided weapons. Most importantly, this development can produce large area diffractive gratings with superb spectrum band selection cheaply enough for broad implementations on battlefield. Security force is another potential user benefiting from this development. The key technology SPEL developed in proposed works will have tremendous impacts on nanofabrication when feature size variation control becomes more and more challenging for making nano-devices. Potentially, the key technologies used and developed for proposed manufacturing process can also be used for making other optical devices, nanofluidic channel for bio-applications, and nano-wire based sensors.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government