Guided Wave-based SHM of Submersible Navy Composites

Award Information
Agency: Department of Defense
Branch: Navy
Contract: N00167-11-P-0438
Agency Tracking Number: N111-053-1013
Amount: $79,972.00
Phase: Phase I
Program: SBIR
Awards Year: 2011
Solicitation Year: 2011
Solicitation Topic Code: N111-053
Solicitation Number: 2011.1
Small Business Information
10 Canal Park, Suite 601, Cambridge, MA, -
DUNS: 111487588
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Seth Kessler
 (617) 661-5616
Business Contact
 Seth Kessler
Title: President
Phone: (617) 661-5616
Research Institution
The implementation of structural health monitoring (SHM) systems into naval applications has been hindered by component quantity, including sensors, cables, and acquisition/computation units, as well as data quality. Particularly for large-area applications such ship hulls, complexity of the implied system infrastructure can be impractical, and data effected by attenuation and EMI-pickup along analog cables. The payoff of reliable SHM would be the ability to detect/characterize in-situ damage for condition-based maintenance, thereby greatly reducing overall life-cycle costs. Metis Design Corporation (MDC) has demonstrated point-of-measurement datalogging and digital sensor-busing during prior Phase II SBIRs, which minimizes SHM infrastructure and EMI susceptibility. During the proposed SBIR, MDC will further exploit this low-mass, long-range, scalable SHM architecture to satisfy Navy requirements for damage detection in submersible composites. Previously developed analytical models will be modified to simulate the wave response for relevant material and geometry (as identified by commercialization partner Goodrich). Piezoelectric-based guided wave methods will be used to interrogate the structure, and pattern recognition-based algorithms will be trained specifically for the detection of damage and characterization of its severity. Finally, MDC will instrument several representative specimens built by Goodrich to generate probability of detection and accuracy versus damage size curves for the proposed method.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government