Signature Prediction and Uncertainty Analysis for Radar-based MDA Applications

Award Information
Agency: Department of Defense
Branch: Missile Defense Agency
Contract: W9113M-11-C-0008
Agency Tracking Number: B2-1742
Amount: $679,999.00
Phase: Phase II
Program: SBIR
Awards Year: 2011
Solicitation Year: 2008
Solicitation Topic Code: MDA08-035
Solicitation Number: 2008.3
Small Business Information
2808 Willow Bend Rd., Champaign, IL, -
DUNS: 03-806-57
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Yanqing Bao
 (217) 778-9535
Business Contact
 Jianming JIn
Title: Vice President
Phone: (217) 417-8586
Research Institution
The objective of this proposal is to develop user-friendly, highly accurate and efficient, robust and powerful computer codes for predication of radar signatures of MDA objects of interest (MOIs) and the effects of geometrical and material uncertainties. Three computer codes will be developed, one for body-of-revolution (BOR) targets, another for discrete body-of-revolution (DBOR) targets, and the third for scattering by a deep, arbitrarily-shaped air duct in an air-breathing missile. Each code will be self-complete as it will include a user-friendly graphical user interface (GUI), a solid modeling capability that can accept commonly used geometry data formats, a robust meshing capability to generate high-quality meshes, a parallelized main computational engine, and necessary post-processing capabilities to handle output data. Equally important, each code will have unmatched capabilities to model complex geometries and materials that can be inhomogeneous and anisotropic. All the three codes are based on a novel physics-based computational electromagnetics (CEM) algorithm for solving Maxwell"s equations and a robust stochastic collocation-based algorithm for uncertainty analysis, both of which have been studied and fully validated in the feasibility study conducted in Phase I. The CEM algorithm combines the finite element and boundary integral methods and implements a novel numerical technique to exploit either the continuous or the discrete rotational symmetry of a BOR or DBOR target to accelerate computations. For scattering by a deep cavity--a well-known grand challenge in CEM, the hybrid finite element and boundary integral method employs a special frontal algorithm to speed up calculation and reduce memory requirements. The stochastic collocation algorithm is capable to perform an uncertainty analysis by using a significantly smaller number of samples than required by the traditional Monte-Carlo method. The development of the proposed computer codes will provide a highly accurate and efficient and easy-to-use tool to compute the radar signatures of MOIs and to quantify potential errors due to geometrical/material modeling uncertainty. All the codes will be parallelized to harness the power of parallel computing. The use of graphical processing units (GPU) will be explored to further speed up the computations.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government