A Risk-Hedged Approach to Traffic Flow Management under Atmospheric Uncertainties

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNX12CD12P
Agency Tracking Number: 115957
Amount: $124,999.00
Phase: Phase I
Program: SBIR
Awards Year: 2012
Solicitation Year: 2011
Solicitation Topic Code: A3.01
Solicitation Number: N/A
Small Business Information
Optimal Synthesis, Inc.
CA, Los Altos, CA, 94022-2777
DUNS: 829385509
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Prasenjit Sengupta
 Principal Investigator
 (650) 559-8585
 sengupta@optisyn.com
Business Contact
 P. K. Menon
Title: Business Official
Phone: (650) 559-8585
Email: menon@optisyn.com
Research Institution
 Stub
Abstract
Volcanic ash and other atmospheric hazards impact air transportation by introducing uncertainty in the National Airspace System (NAS) capacity. Deterministic traffic flow management (TFM) algorithms are often unable to perform efficiently in these conditions, motivating the development of probabilistic TFM algorithms. It has been shown that these algorithms result in a Stochastic Linear Program (SLP), whose structure is relatively simple due to elegant theory, but which can be hard to solve in realistic time frames due to computational complexity. This proposal has three objectives. The primary objective is to translate the volcanic ash phenomenon into airspace capacity uncertainty distributions. The second objective is to design probabilistic TFM algorithms using an SLP solver on a Graphics Processing Unit (GPU) to tame the computational complexity of the problem.The third objective addresses the fact that current probabilistic TFM formulations leave the variance in the system unchanged. Consequently, the system may exhibit unintended variance, causing delays and congestion in the NAS. Variance in delays and the mean delay cannot be minimized together because the exact tradeoff is not known a priori. Concepts from Modern Portfolio Theory (MPT) are introduced, that can formulate and solve a multi-objective optimization problem in the mean as well as variance of the system delay. Using MPT and SLP, risk-hedged strategies for aircraft scheduling are obtained to mitigate the effects of atmospheric hazards.In Phase I, volcanic ash models will be researched, and a framework for obtaining capacity uncertainty distributions due to volcanic activity will be developed. The SLP solver will be implemented on the GPU. Finally, a portfolio-theoretic approach to risk-hedged trajectories will be researched. Phase II work will extend results to a large scale NAS simulation, with more advanced volcanic ash and atmospheric disruption models.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government