Development of a Novel, Reactive Extrusion Process for Continuous Production of Long, Pure Carbon Nanotubes for Application in Lightweight Composite Materials

Award Information
Agency: National Aeronautics and Space Administration
Branch: N/A
Contract: NNX12CD61P
Agency Tracking Number: 115770
Amount: $124,439.00
Phase: Phase I
Program: SBIR
Awards Year: 2012
Solicitation Year: 2011
Solicitation Topic Code: A2.01
Solicitation Number: N/A
Small Business Information
700 Research Center Boulevard, Fayetteville, AR, 72701-7175
DUNS: 962771890
HUBZone Owned: Y
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Matthew Leftwich
 Principal Investigator
 (479) 215-9438
Business Contact
 Matthew Leftwich
Title: Founder / Engineering Director
Phone: (479) 215-9438
Research Institution
According to the NASA A2.01 topic description titled Materials and Structures for Future Aircraft, "advanced materials and structures technologies are needed in all four of the NASA Fundamental Aeronautics Program research thrusts (Subsonics Fixed Wing, Subsonics Rotary Wing, Supersonics, and Hypersonics) to enable the design and development of advanced future aircraft. Proposals are sought that address specific design and development challenges associated with airframe and propulsion systems. These proposals should be linked to improvements in aircraft performance indicators such as vehicle weight, fuel consumption, noise, lift, drag, durability, and emissions." The technologies of interest to NASA cover five themes. The technology proposed herein falls under the first theme, Fundamental Materials Development, Processing, and Characterization (Topic: A2.01 / Lead Center: GLC). More specifically, the herein proposed work addresses the need for "new high strength fibers, in particular low density, high strength and stiffness carbon fibers" that may be utilized in high strength-to-weight ratio composite materials to reduce vehicle weight without compromise to or likely to increase durability. Carbon nanotubes (CNT) have been studied extensively over the past two decades, resulting in a large quantity of fundamental research that has been performed in the areas of synthesis, purification, separation, functionalization, applications development, etc. Their unique properties are expected to bring about a new age of structural and electrical materials. However, one of the primary problems associated with CNT applications development is that all current synthesis techniques produce only short strands of CNT's, typically 10's to 100's of microns long. Therefore, current applications are limited to those that can effectively utilize short CNT strands. The technology proposed herein has the potential to produce continuous, long strands of pure CNT material.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government