Transgenic Mosquitoes for Improved Malaria Sporozoite Vaccine Manufacture

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 2R44AI077262-03A1
Agency Tracking Number: R44AI077262
Amount: $2,955,385.00
Phase: Phase II
Program: SBIR
Solicitation Topic Code: NIAID
Solicitation Number: PA11-096
Solicitation Year: 2012
Award Year: 2012
Award Start Date (Proposal Award Date): N/A
Award End Date (Contract End Date): N/A
Small Business Information
9800 Medical Center Dr., ste A209, ROCKVILLE, MD, -
DUNS: 131092715
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 (301) 770-3222
Business Contact
Phone: (301) 770-3222
Research Institution
DESCRIPTION (provided by applicant): An ideal tool for eliminating Plasmodium falciparum (Pf), the causative agent of 99% of all malaria deaths, would be a highly effective vaccine that prevents blood stage infection and thereby prevents both disease and transmission. Sanaria's goal is to develop and commercialize a Pf sporozoite (SPZ) vaccine that prevents Pf blood stage infection in gt 90% of recipients. The Sanaria(R) PfSPZ Vaccine is composed of attenuated, purified, aseptic, cryopreserved PfSPZ. The platform technology developed to manufacture the vaccine has also allowed the manufacture of PfSPZ for challenge infections to test vaccines and drugs (PfSPZ Challenge) and for vaccination by challenge under chloroquine protection (PfSPZ-CVac). These comprise a portfolio of products that are on an aggressive timeline to commercialization. The PfSPZ used in these products are extracted from aseptically reared mosquitoes. Increasing the number of SPZ per mosquito directly reduces the cost of goods. This projectwill develop a strain of genetically modified (GM) Anopheles stephensi mosquitoes highly susceptible to PfSPZ infections. By silencing a mosquito immune effector gene, LRIM1 (a member of the LRR gene family), we have reproducibly increased SPZ loads in A.stephensi. We have also demonstrated a phenotype of increased oocyst burdens in a transgenic A. stephensi strain expressing a SRPN6 double- stranded RNA (dsRNA) sequence in a hairpin construct that was fully integrated into the genome. These major resultsjustify this Phase II project which will create GM A. stephensi lines in which expression of LRIM1 or APL1 is reduced or eliminated, providing a stable and efficient SPZ-production platform for Sanaria's manufacturing process. Two strategies are planned for silencing LRIM1: 1) directly silencing the genes through the expression of gene-specific dsRNA to elicit an endogenous RNA interference response against LRIM1 or APL1 transcripts; 2) indirectly silencing the genes by disrupting the relevant regulatory signaling pathway through either the over-expression of the negative-regulatory protein Caspar or a dominant-negative variant of the transcription factor Rel2. Our successful Phase I strategy was to directly silence genes by driving the expression of gene-specific dsRNA to elicit endogenous RNA interference; this approach will be improved upon for the creation of GM A. stephensi. We will create gene-silencing transgenes by incorporating the GAL4/UAS binary expression system and a 'two-target' gene silencingtechnology. This strategy will enable us to limit the costly and time consuming assessments of infection phenotype as it enables efficient determination of gene silencing prior to infectious feeding. This approach will enhance our capacity to produce strains with the optimal genotypes and phenotypes. We will screen GM lines to identify those that consistently produce e 2 fold more PfSPZ compared to the current production strain of A. stephensi. Selected strains will be studied under standard insectary conditions, and under the aseptic conditions used for GMP compliant manufacturing. We will incorporate the optimal GM strain of A. stephensi into Sanaria's manufacturing process. PUBLIC HEALTH RELEVANCE: To protect individuals against malaria and to aid in eradicating this disease, a highly effective vaccine is needed. Sanaria has developed a platform technology, manufacture of live Plasmodium falciparum sporozoites (PfSPZ) to make such a vaccine. Two are in clinical development. The first is a live attenuated whole organism vaccine called the PfSPZ Vaccine. The second is a live infectious vaccine administered with an antimalarial drug, a vaccine called PfSPZ-CVac. In addition Sanaria has developed live, infectious PfSPZ, a product called PfSPZ Challenge, for use in testing malaria drugs and vaccines. All the products require the growth of PfSPZ in aseptic Anopheles stephensi mosquitoes. This proposal aims to increase the yields of sporozoites by genetically modifying the mosquito immune system. Success in this project will greatly reduce cost of vaccine manufacture, thereby making the vaccine available more cheaply for travelers and developing world populations.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government