Peptide conjugation for Co-Delivery of Growth Factors and Stem Cells

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$1,479,035.00
Award Year:
2012
Program:
SBIR
Phase:
Phase II
Contract:
2R44GM077753-04
Award Id:
n/a
Agency Tracking Number:
R44GM077753
Solicitation Year:
2012
Solicitation Topic Code:
NIGMS
Solicitation Number:
PA11-096
Small Business Information
AFFINERGY, LLC (Currently AFFINERGY ,INC)
BOX 14650, 617 DAVIS DR STE 100, RESEARCH TRIANGLE PARK, NC, -
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
141938006
Principal Investigator:
SHRIKUMAR NAIR
(919) 433-2268
snair@affinergy.com
Business Contact:
CHRIS BRASFIELD
(919) 433-2227
cbrasfield@affinergy.com
Research Institution:
Stub




Abstract
DESCRIPTION (provided by applicant): Autologous stem cells and growth factors provide valuable therapies for a variety of indications. When stem cells and growth factors are co-delivered, they produce a greater therapeutic effect than delivery of either stem cells or growth factors alone. However, the use of growth factors in the clinic is limited by the challenges of retaining the proteins at the site of healing. The use of stem cells is challenging because of the low frequency of cells in autologous tissue. To address these difficulties, Affinergy used its core technology, phage display biopanning, to screen phage libraries containing billions of candidate peptide sequences. From this process, we identified peptides that bind with high affinity and specificity to growth factors and stem cells. In our Phase II project, we developed a biomaterial coated with a growth factor-binding peptide that captures and retains growth factors significantly longer than the commercially available biomaterials. We demonstrated in animal models that this biomaterial has greater therapeutic efficacy than commercially available products when combined with autologous tissue containing the target growth factor. In this Competing Renewal application, we propose to further enhancethe efficacy of this product through the addition of a stem cell-binding peptide, also identified by phage display. The combination of the two peptides will increase the capture of stem cells from autologous tissue onto the material and provide a synergistic effect with the capture and retention of growth factors. PUBLIC HEALTH RELEVANCE: Stem cells and growth factors provide valuable therapies for a variety of indications, and co-delivery of stem cells with growth factors produces a greater therapeutic effect than delivery of either stem cells or growth factors alone. In this application, we propose to develop a biomaterial that can bind and retain both growth factors and stem cells.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government