In vitro Reconstitution of Protein Translation of Thermus Thermophilus for Direct

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$960,499.00
Award Year:
2012
Program:
SBIR
Phase:
Phase II
Contract:
2R44GM086930-02
Award Id:
n/a
Agency Tracking Number:
R44GM086930
Solicitation Year:
2012
Solicitation Topic Code:
NIGMS
Solicitation Number:
PA11-096
Small Business Information
240 County Road, Ipswich, MA, -
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
66605403
Principal Investigator:
SHAORONGCHONG
(978) 927-5054
chong@neb.com
Business Contact:
BRIANTINGER
(978) 380-7485
tinger@neb.com
Research Institute:
Stub




Abstract
DESCRIPTION (provided by applicant): Directed protein evolution is a powerful technology for protein engineering. It generally involves generating a library of protein variants and identifying those with desired properties by selection or screening. In terms of library complexity, in vitro selection methods are superior to cell-based selection methods by several orders of magnitude, allowing a much larger sequence space in proteins to be sampled. There is currently no effective in vitro method to select proteins with desired mutations that enhance their thermostability. Thermostable proteins can function at high temperatures, are generally robust and resistant to degradation under a variety of conditions, and therefore are valuable for a wide range of industrial and medical applications. This project intends to develop a technology for in vitro selection of protein thermostability. We plan to achieve this goal by (1) constructing a reconstituted in vitro protein synthesis system (thermo PURE system) using purified components from Thermus thermophilus, a bacterium that grows at an optimal temperature of 720C, and (2) applying such system for directed evolution of proteins with enhanced thermostability. We have successfully completed the first phase of the project (Phase I) and established an initial thermo PURE system that allowed in vitro synthesis of active full- length proteins at temperatures up to 600C. For the Phase II, we propose to commercialize the thermo PURE system by optimizing the system and testing more target proteins. We also propose to use the thermo PURE system in conjunction with in vitro selection technologies, such as in vitro compartmentalization and ribosome display, for directed evolution of thermostable proteins from their mesophilic origins. We plan to test several selection schemes of directed evolution for a variety of enzymes and proteins. If successful, this project would lead to the following unique and valuable commercial products: (1) a protein thermo synthesis kit; (2) a servicefor engineering proteins with enhanced thermostability; (3) thermostable nucleic acid enzymes as new reagents for research communities and thermostable single-chain antibodies for therapeutic applications. PUBLIC HEALTH RELEVANCE: Proteins can be engineered to function at high temperatures and exhibit robustness and resistance to degradation under a variety of conditions. This project intends to develop a technology to select engineered thermostable proteins for industrial and medical use.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government