Enhancing mammalian glycoprotein production in the baculovirus expression vector

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$1,068,710.00
Award Year:
2012
Program:
SBIR
Phase:
Phase II
Contract:
2R44GM093411-02
Award Id:
n/a
Agency Tracking Number:
R44GM093411
Solicitation Year:
2012
Solicitation Topic Code:
NIGMS
Solicitation Number:
PA12-088
Small Business Information
1122 Oak Hill Dr., LEXINGTON, KY, -
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
178801671
Principal Investigator:
ANGELIKA FATH-GOODIN
(859) 317-9213
agoodin@paratechs.com
Business Contact:
ANGELIKA GOODIN
(859) 317-9213
agoodin@paratechs.com
Research Institution:
Stub




Abstract
DESCRIPTION (provided by applicant): The baculovirus expression vector system (BEVS) is a proven, powerful and versatile method of eukaryotic protein expression. It is used to produce vaccines, diagnostics, and biologically active proteins for a multitudeof research projects. Like all expression systems, however, BEVS has its disadvantages. One is the fact that expression is short-lived due to virus-induced cell death and lysis. ParaTechs has already commercialized a product that addresses this shortcoming. Cell lines that express a viral ankyrin gene show delayed death and lysis of baculovirus-infected cells, thereby significantly enhancing recombinant protein production. This activity, referred to as vankyrin-enhanced BEVS (VE-BEVSTM), boosts target protein expression up to 22-fold. A second limitation of baculovirus expression is that insect cells lack the ability to produce terminally sialylated, complex N-glycans, which limits the usefulness of BEVS for the expression of human therapeutic proteins. GlycoBac LLC has developed a transgenic insect cell line (SfSWT4) that expresses six mammalian glycosylation enzymes, allowing synthesis of terminally sialyated proteins. This Phase II proposal combines ParaTechs' VE technology with GlycoBac's cell line to optimize expression of humanized N-glycans. In Phase I, the transgenic cell line SfSWT4 was transformed with several vankyrin genes under the control of different promoters. Polyclonal cells were screened for enhanced glycoprotein expression. Data demonstrating that infected cells lived longer and produced more authentically sialylated protein confirmed our hypothesis. Phase II will extend these studies by (1) cloning and characterization of VE-SWTTM cells according to FDA guidelines for cells used to produce vaccines and biological; (2) examining synergistic effects between VE virus vectors and VE-SWT cell lines to provide greater levels of enhancement; and (3) demonstrating enhanced expression of medically relevant glycoproteins in VE-SWTTM cells. These Phase II studies will significantly expand the applications of ParaTechs' VE-BEVS technology and GlycoBac's glycoengineered cell lines. Personnel at both companies have experience with the techniques to be used. Preliminary studies indicate that this technology has a significant chance of performing as envisioned. Furthermore, prior marketing experience with transformed cell lines previously released from the two companies suggests a significant demand for the expanded technology. This new technology shouldbe relatively easy to commercialize based on the established reputations of ParaTechs, Inc. and GlycoBac, LLC and the growing demand for improved cell lines to express recombinant humanized glycoproteins. PUBLIC HEALTH RELEVANCE: The inability ofinsect cells to produce terminally sialylated, complex N-glycans limits the usefulness of the baculovirus expression system for the production of human therapeutic proteins. This proposal addresses that deficiency and aims to develop new cell lines that produce authentic humanized N-glycans in the context of ParaTechs' vankyrin-enhanced baculovirus technology. Successful completion of these objectives will produce cells that provide the highest levels of accurately processed secreted and transmembrane proteins and will be marketed to individual researchers and pharmaceutical companies engaged in structure-function studies of the human secretome and development of protein therapeutics.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government