Microelectrode Array to Enable Robust Water Monitoring for Multiple Contaminants at Sub-Nanomolar Concentrations

Award Information
Agency: Environmental Protection Agency
Branch: N/A
Contract: EP-D-12-017
Agency Tracking Number: EP-D-12-017
Amount: $79,999.00
Phase: Phase I
Program: SBIR
Awards Year: 2012
Solicitation Year: 2012
Solicitation Topic Code: A
Solicitation Number: N/A
Small Business Information
315 Huls Dr., Clayton, OH, 45315-
DUNS: 793274747
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Heather McCrabb
 (937) 836-7749
Business Contact
 E Taylor
Phone: (937) 836-7749
Email: jenningstaylor@faradytechnology.com
Research Institution
The proposed SBIR project addresses the need for robust, compact, sensitive, low cost sensors for measurement of contaminants in water. The proposed innovation is the development and validation of an ion-selective microelectrode array, capable of simultaneous detection of multiple species in aqueous environments, with detection limits similar to or exceeding those available using standard laboratory-based instrumentation. The ion-selective microelectrode array embodies a polymer membrane film coupled with stripping voltammetry to enable detection of a wide range of cations and anions, without the need for a rotating electrode or mercury film. This technology builds on work by Prof. Amemiya of the University of Pittsburgh, a consultant to the program. The Phase I Objectives are to 1) show that the ion selective electrode concept can be incorporated onto a microelectrode for detection of perchlorate and lead, and show the potential to meet or exceed the detection limits obtained using laboratory based instrumentation, and 2) show that the microelectrode concept be extended to a microelectrode array leading to manufacturable, low cost robust sensors for commercial application. During Phase I, Faraday will provide a foundation for Phase II product and process development by demonstrating the feasibility of the ion selective microelectrode concept for in-line measurement of lead and perchlorate in water using single microelectrodes and provide comparison data between the detection limits for the ion selective microelectrodes and the ion selective rotating disc electrodes previously developed by Prof. Amemiya. As the single microelectrode concepts prove successful, Faraday will work with Prof. Amemiya and Water Analytics, Inc. to design microelectrode arrays, specifically with respect to scale-up and manufacturability. Phase II will concentrate on expanding the range of analytes detected, developing the commercialization activities. Optimization of the ion selective stripping voltammetry process will enable commercialization of a robust, rapid, inexpensive sensor array, in accordance with the EPA’s initiatives to promote development of novel water monitoring technologies, initially within the recently formed EPA Cincinnati/Dayton/Northern Kentucky water technology cluster, and subsequently throughout the United State. The potential commercial applications for the technology address three major markets: 1) drinking water, including desalination, 2) wastewater, including industrial and municipal, and 3) surface and groundwater monitoring. The market is conservatively estimated to be at least $500 million. An inexpensive and robust species analyzer is anticipated to rapidly infiltrate this market.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government