Chirped Electron Bunch Energy Compensation For An X-Ray Light Source

Award Information
Agency: Department of Energy
Branch: N/A
Contract: DE-FG02-11ER90116
Agency Tracking Number: 97118
Amount: $999,168.00
Phase: Phase II
Program: SBIR
Awards Year: 2012
Solicitation Year: 2012
Solicitation Topic Code: 13 f
Solicitation Number: DE-FOA-0000676
Small Business Information
5900 Harper Rd. #102, Solon, OH, 44139-1866
DUNS: 141568639
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Alex Kanareykin
 (440) 519-0410
Business Contact
 David Dunay
Title: Mr.
Phone: (440) 519-0410
Research Institution
Short electron beam pulses (subpicosecond) are central to many of the next generation light source initiatives, like X-Ray Free Electron Lasers. These FELs are based on linear accelerators which produce at the output of the last compressor an electron beam with a residual chirp to compensate for wakefield effects through the rest of the accelerating stage. It is required that this small but significant energy spread be compensated using a specially designed device. We propose to use a dielectric layered waveguide with an adjustable aperture (~2 mm) to be installed, for example, at the output of the last compressor, or at the end of the linac. This short device (~20cm) would allow the compensation of the remaining energy spread (~5 MeV chirp) after longitudinal bunch compression, using its self-wakefield-- Cherenkov radiation generated by the bunch passing through the dielectric loaded waveguide. In Phase I of this proposal Euclid Techlabs demonstrated energy chirp compensation by means of a quartz- loaded 0.95 THz cylindrical waveguide: the 200 keV correlated energy spread of a 60 MeV beam at the BNL Accelerator Test Facility (ATF) was reduced by a factor of three to the spectrometer resolution limit. The energy modulation of a long chirped bunch was demonstrated. A paper based on these results was accepted by Physical Review Letters. We have also developed tools to simulate how the beam energy is affected by its self-wake. This code was benchmarked against experimental results at the ATF. Finally, a tunable energy chirp correction structure was developed for further testing in Phase II. In Phase II we will build and test an optimized energy chirp compensating structure using the ATF beam. We have also designed a quartz structure for energy chirp compensation of the FACET (SLAC) beam which will be available for experiments in 2013 2014.The experience and knowledge gained in Phase I will help further optimization of the experimental design and ensure the success of the project. Commercial Applications and Other Benefits: The techniques we propose in this project can reduce the energy chirp of an electron beam produced with existing technologies to make it suitable to drive the next generation of X-Ray FELs. Ultrashort x-ray pulses are a powerful tool for addressing grand challenges in science, e.g. control of materials and processes at the level of electrons, design and perfect atomic- and energy-efficient synthesis of new forms of matter with tailored properties, understanding of the remarkable properties of the matter emerging from complex correlations of atomic and electronic constituents, etc.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government