Piezoelectric Pipetting for High Density Nucleic Acid Programmable Protein Arrays

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$1,787,280.00
Award Year:
2012
Program:
STTR
Phase:
Phase II
Contract:
4R42GM106704-03
Award Id:
n/a
Agency Tracking Number:
R42GM106704
Solicitation Year:
2012
Solicitation Topic Code:
NIGMS
Solicitation Number:
PA07-452
Small Business Information
2702 E VERBENA DR, PHOENIX, AZ, -
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
828898879
Principal Investigator:
PETERWIKTOR
(480) 626-5946
WIKTOR@ENGINEERING-ARTS.COM
Business Contact:
PETERWIKTOR
(480) 626-5946
wiktor@engineering-arts.com
Research Institute:
ARIZONA STATE UNIVERSITY-TEMPE CAMPUS

ARIZONA STATE UNIVERSITY-TEMPE CAMPUS
ORSPA PO BOX 876011
TEMPE, AZ, 85281-6011
() -

Abstract
DESCRIPTION (provided by applicant): Among the currently available techniques for high throughput proteomics, protein microarrays have the greatest prospects to revolutionize molecular diagnostics for early detection, diagnosis, treatment, prognosis and monitoring clinical response. However, protein microarrays have yet to reach their full potential as a research or clinical molecular diagnostics tool due to difficulties associated with their manufacture. Currently protein microarrays are manufactured by expressing and purifying thousands of proteins, which are then stored until they are printed using pin-spotters, a process flow with many inherent logistical problems. Furthermore, many proteins are unstable so these steps must all be maintained at cold temperature. Problems associated with pin spotters include: relatively slow printing speeds, poor spot morphology, pin biofouling issues, variable spot sizes, limited microarray densities and others. Thus, there are compelling needs for better and less expensive manufacturing methods for protein microarrays. In this grant we will combine two successful technologies to develop an innovative method for mass production of faster, better and cheaper protein microarrays. One technology is based on our advanced highspeed piezoelectric pipettes to print arrays of cDNA templates and the other is to express proteins in situ directly on the microarray surface. Engineering Arts specializes in providing microarray production solutions based on its proprietary piezoelectricpipetting technology. Dr. LaBaer is the co-inventor of nucleic acid programmable protein arrays (NAPPA): the very first method to express proteins in situ directly in a microarray format. Engineering Arts will install one of its production-scale piezoelectric microarray machines (POC2) in Dr. LaBaer's Center for Personalized Diagnostics (CPD), Biodesign Institute, Arizona State University. We will develop tools, protocols and process controls required to manufacture production-scale, commercial-grade, high-density, customizable protein microarrays making them readily accessible to the broad proteomics research and clinical diagnostics communities. This grant directly addresses the call to develop a broadly applicable research tool that addresses a core technical challenge in proteomics. By making high quality protein microarrays more readily assessable, this grant will help unlock their true potential for research and clinical applications. This grant brings together world-class piezoelectric pipettes and electronics developed at Engineering Arts, over ten years experience in developing commercial automated production-scale piezoelectric microarraying manufacturing capabilities for high-density whole-genome gene expression microarrays; world class production-scale automation process manufacturing equipment from an established Singapore based semiconductor production equipment manufacturer, Dr. LaBaer's unique and patented NAPPA technology together in his CPD to develop, characterize and validate the nextgeneration of commercial protein microarrays. PUBLIC HEALTH RELEVANCE: Nearly all diagnostics and therapeutics act through proteins, which are the working machines of biology. The study of proteins, both their activities and their dysfunction in disease, has been historically managed one- protein-at-a-time; however, this will be dramatically accelerated through the use of protein microarrays, which microscopically display thousands of functional proteins. This grant will develop technology to mass produce better and less expensive protein microarrays, making them more readily accessible to the broad research and health care communities.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government