SBIR Phase I: Micro Laser Assisted Machining

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 1214772
Agency Tracking Number: 1214772
Amount: $149,964.00
Phase: Phase I
Program: SBIR
Awards Year: 2012
Solicitation Year: 2012
Solicitation Topic Code: NM
Solicitation Number: N/A
Small Business Information
4950 W. Dickman Rd, Suite B-5, Battle Creek, MI, 49037
DUNS: 969977029
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Deepak Ravindra
 (269) 276-3461
Business Contact
 Deepak Ravindra
Phone: (269) 276-3461
Research Institution
This Small Business Innovation Research Phase I project will demonstrate proof of concept and determine the feasibility of a micro-laser assisted machining (micro-LAM) process that will both reduce the time, cost, and effort, and extend the capability, associated with machining of hard and brittle semiconductors and ceramics. The proposed research is unique, and the research team is well-qualified to perform the feasibility research around this innovative process, which couples a laser to a diamond cutting tool in a hybrid package arrangement to perform precision machining of semiconductors and engineered ceramics. Experiments will be conducted, based upon a bench scale laboratory configuration, to test and evaluate the micro-LAM process and system for feasibility in an industrial setting on industrial processing equipment. Tool wear, machined material surface finish and subsurface damage data, as a function of laser and process parameters, will be evaluated relative to the potential for the micro-LAM process to be developed into a successful commercial product. The overall result of this project will be a cost-effective method for the production of useful and commercially viable consumer and industrial products manufactured from advanced semiconductors and engineered ceramics. The broader impact/commercial potential of this project will occur in semiconductor (micro-electronic) manufacturing, and for manufacturing of optical (mirror and windows) and precision mechanical products (e.g. bearings and seals), where the superior properties of advanced semiconductor and engineered ceramic materials are required to achieve the desired performance. The micro-LAM technology offers a new way to realize the high pressures and temperatures that are needed for processing these hard and nominally brittle materials. This technology will enable entirely new capabilities for production of materials and products currently not viable or achievable due to processing or use limitations. The new method has potential applications to emerging technologies, such as wind turbines and plug-in electric vehicles, where high-power and high-temperature operation of advanced devices is required. The served available market that includes machine tools for diamond turning, milling, and drilling is approximately $4.5 billion. The micro-LAM technology will initially target existing (~10,000 units) and new ($150 million/year) diamond turning machines as an add-on accessory.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government