SBIR Phase I: Dry Epitaxial Lift-off for High Efficiency Solar Cells

Award Information
Agency:
National Science Foundation
Branch
n/a
Amount:
$150,000.00
Award Year:
2012
Program:
SBIR
Phase:
Phase I
Contract:
1215626
Award Id:
n/a
Agency Tracking Number:
1215626
Solicitation Year:
2012
Solicitation Topic Code:
NM
Solicitation Number:
n/a
Small Business Information
9727 NE Sandy Blvd, Room 156, Portland, OR, 97220-0000
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
362175965
Principal Investigator:
JohnFarah
(401) 616-4176
johnfarah@hotmail.com
Business Contact:
JohnFarah
(401) 616-4176
johnfarah@hotmail.com
Research Institute:
Stub




Abstract
This Small Business Innovation Research Phase I project develops a method of lifting-off an epitaxially grown high-efficiency (>30%) triple-junction III-V solar cell from a Ge or GaAs wafer onto a polyimide substrate. A high-coefficient of thermal expansion (CTE) polyimide wafer is used to induce a crack that propagates parallel to the surface at the epi/wafer interface, due to the mismatch between the coefficients of thermal expansion, as the wafer is cooled down below room temperature. The lift-off happens in a fraction of a second and no expensive ion implantation or slow chemical etching of a sacrificial layer is needed. The epi-layer is attached to a low-cost flexible polyimide substrate having a thickness between 25 and 100 microns which serves as the permanent carrier of the solar cell. Inverted and non-inverted cells can be lifted off using this technique. The base substrate can be reused to grow another epi-layer and the cycle repeated. For these devices, the cost of substrate materials is about 40% of the cost of the finished cell. This process will result in savings of raw materials and grinding and etching costs, up to a total savings of 30% of the cost of the cell. The broader impact/commercial potential of this project will be to develop a method to transfer epitaxially-grown device layers from semiconductor wafers to inexpensive polymeric substrates to create high-performance flexible circuits. The application of this technology goes beyond photovoltaics (PV). Space-grade as well as terrestrial high-efficiency PV cells and modules can be made lighter, flexible, and less expensive when this process is integrated into the manufacturing sequence of established suppliers. Additionally, when the thinned cell is transferred to a metallic substrate, the reduced thickness improves performance of terrestrial concentrating PV systems. Once this method is demonstrated, we will leverage our relationships with major high-efficiency solar cell manufacturers to negotiate licensing of the technology for their applications.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government