SBIR Phase II: Atom Chips for Cold&Ultracold Matter Applications

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 1126099
Agency Tracking Number: 1126099
Amount: $483,931.00
Phase: Phase II
Program: SBIR
Awards Year: 2012
Solicitation Year: 2012
Solicitation Topic Code: NM
Solicitation Number: N/A
Small Business Information
1600 Range St., Suite 103, Boulder, CO, 80301-2739
DUNS: 800608643
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Daniel Farkas
 (303) 440-1284
Business Contact
 Daniel Farkas
Phone: (303) 440-1284
Research Institution
This Small Business Innovation Research (SBIR) Phase II project seeks to develop the next generation of atom chips for producing and manipulating ultracold atomic gases (temperatures<1µK). While atom chips developed in Phase I provided only magnetic control, these new hybrid atom chips will be able to manipulate ultracold matter both magnetically and optically. These chips will be incorporated into atom-chip vacuum cells, allowing optical techniques to be implemented in compactultracold matter products. In Phase I, we developed silicon/glass wafers for both creating ultrahigh vacuum electrical feedthroughs with near perfect yield as well as in-trap imaging of ultracold matter. In Phase II, we will further develop this technology by incorporating miniature on-chip opticalelements as a vehicle for bringing optical potentials (e.g. produced by laser beams) into the vacuum system. Our research plan includes redesigning existing chip layouts to accommodate small-sized optics that will be anodically bonded to silicon regions of the chip. To further enhance functionality,we will pursue both anti-reflection coating of atom chips and redesigns of the connectorization scheme used to bring electrical currents to the chip. The broader impact/commercial potential of this project is to greatly expand the number and variety of experimental techniques that can be implemented with atom-chip vacuum cells. Of key interest here are optical techniques, such as optical lattices, used to trap and coherently control quantum mechanical systems (e.g. Bose-Einstein condensates). An important application of ultracold lattice-trapped atoms is interferometry, which can be used to realize gyroscopes, accelerometers, and gravimeters that are expected to be orders of magnitude more sensitive than current state-of-the-art technologies. Such devices are crucial for navigational positioning systems and satellite communications, and therefore are of great interest to both commercialand defense-oriented markets. Optical trapping is also vital for the next generation of neutral atomic clocks, whose accuracy is now exceeding a phenomenal 1 part in 10^17 (i.e. a loss of 1 second every 3 billion years). Optically trapped atoms are also ideal for implementing quantum information algorithms, and therefore have many applications in the emerging fields of quantum computation and information processing. For basic science, optical lattices have been used for precision measurements of fundamental constants, some of the most stringent tests of the Standard Model of Physics, and groundbreaking studies of many-body physics.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government