SBIR Phase II: An Improved Open-Path FTIR Spectrometer for Remote Monitoring of Atmospheric Gases

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 1127205
Agency Tracking Number: 1127205
Amount: $487,023.00
Phase: Phase II
Program: SBIR
Awards Year: 2012
Solicitation Year: 2012
Solicitation Topic Code: BC
Solicitation Number: N/A
Small Business Information
Energetiq
7 Constitution Way, Woburn, MA, 01801-1024
DUNS: 153302398
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Stephen Horne
 (781) 939-0763
 shorne@energetiq.com
Business Contact
 Stephen Horne
Phone: (781) 939-0763
Email: shorne@energetiq.com
Research Institution
 Stub
Abstract
This Small Business Innovation Research (SBIR) Phase II project will enable Energetiq Technology, Inc. to develop and commercialize an advanced Open-Path FTIR Spectrometer (OPFTIR) instrument for monitoring of atmospheric gases over extended distances. The Phase II technical goals will be the optimization of a high-brightness infrared source and optical subsystem that will enable long path instrument capabilities. For current FTIR instruments the infrared light source is a thermal blackbody, limited to operating temperatures of approximately 1000 C. For OP-FTIR instruments the consequences of relying on such low-brightness light sources are (a) bulky and expensive IR optics; (b) expensive IR detectors; and (c) limited monitoring range ? typically less than a few hundred meters. The laser heated IR light source developed in Phase I has demonstrated greater than 2000C operation. Direct comparison with a standard GlobarTM source shows an improvement in signal amplitude of between 2 and 10 (depending on wavelength) and signal to noise measurements imply an improvement in detectability of from 1.5 to about 6. The broader impacts of this research are in the area of environmental monitoring and potentially in Homeland Security applications. The cost and size of OP-FTIR instruments will be reduced and the range and sensitivity increased. With increased emphasis on monitoring total fluxes of atmospheric pollutants, including global warming gases such as CO2, OP-FTIR instruments will be even more widely used in the future.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government