SBIR Phase II: Novel synthesis method for ionic liquids

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 1152040
Agency Tracking Number: 1152040
Amount: $499,980.00
Phase: Phase II
Program: SBIR
Awards Year: 2012
Solicitation Year: 2012
Solicitation Topic Code: BC
Solicitation Number: N/A
Small Business Information
18300 Highway 72, Suite 6, Arvada, CO, 80007-0000
DUNS: 962828294
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Jerry Martin
 (303) 432-1400
Business Contact
 Jerry Martin
Phone: (303) 432-1400
Research Institution
This Small Business Innovation Research Phase II project is targeted at the development of a novel, low-cost continuous method for the production of ionic liquids. Ionic liquids are a class of industrial chemicals with broad applications in energy, pharmaceutical, biomass and solar fields. Ionic liquids are leading candidates for electrolytes in advanced batteries and capacitors where they enable non-flammable, longer-lived batteries that store more energy than current models. While the potential of ionic liquids is significant, the current cost is prohibitive. Boulder Ionics Corporation proposes to develop a novel, cost-effective method for producing ionic liquids in industrial volumes. The highly flexible technique enables continuous production of ionic liquids with low capital cost. It eliminates the use of solvents in the synthesis process, and produces a very high purity product. In Phase II the company will develop the novel synthesis process, demonstrate low-cost ways of making key precursors, and develop techniques for purifying and measuring the purity of the products. Successful completion of the program will result in low-cost, high-performance electrolytes for advanced energy storage. The broader impact/commercial potential of this project is to make ionic liquids cost-effective in a wide range of industries. Ionic liquids can replace volatile organic solvents in a vast range of industrial processes, are leading candidates for biomass processing, and have broad applications in electrochemistry, advanced batteries, supercapacitors/ultracapacitors and as heat transfer fluids in advanced concentrating solar plants. In addition, our innovative synthesis technique has broad application across the chemical industry. Cost-effective ionic liquids are critical elements of the new energy economy, with applications in biomass, solar power, and grid-scale energy storage. Techniques developed in this research will enhance scientific understanding of novel chemical reactors, leading to a new generation of more efficient and less-polluting chemical plants. Knowledge gained in this program will enable technologies that will enhance U.S. energy security, and strengthen the emerging U.S. battery industry.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government