SBIR Phase II: Magnetic technologies for improved microalgal biofuels production

Award Information
Agency:
National Science Foundation
Branch
n/a
Amount:
$495,763.00
Award Year:
2012
Program:
SBIR
Phase:
Phase II
Contract:
1152497
Award Id:
n/a
Agency Tracking Number:
1152497
Solicitation Year:
2012
Solicitation Topic Code:
BC
Solicitation Number:
n/a
Small Business Information
Phycal (Currently Phycal LLC)
51 Alpha Park, Highland Heights, OH, 44143-0000
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
791583524
Principal Investigator:
Brad Postier
(216) 780-5752
brad.postier@phycal.com
Business Contact:
Brad Postier
(216) 780-5752
brad.postier@phycal.com
Research Institution:
Stub




Abstract
This Small Business Innovation Research Phase II project develops novel technologies for separation and concentration of intrinsically magnetically susceptible algae for production of biofuels and biochemicals. Phase II builds on the feasibility demonstrated in Phase I using a model alga. During Phase II, an algal strain used for production of renewable biofuel feedstock will be utilized. Novel transformation vectors and tools developed for a production strain, Auxenochlorella protothecoides, will be used to make the algae magnetically susceptible. These traits provided an advantage vs. wild-type strains in growth in low iron medium for the model alga. Phase II will test modified algal strains at lab- and subpilot-scale to determine their performance in growth, and competition with wild-type and weedy algal strains. Additionally, strains will be tested for their ability to be separated or harvested magnetically. This separation will be modeled to determine cost efficacy for primary or secondary dewatering. The specificity of this separation will also be evaluated in relation to downstream use in a heterotrophic bioreactor. The OSU collaboration allows use of these strains in novel rare earth magnetic separators. The endpoint will be novel technologies to improve the overall cost structure for the production of algae-derived biofuels and biochemicals. The broader impact/commercial potential of this Phase 2 research project will be to provide improvements in the economics of producing renewable biofuels using algae as the production system. It directly addresses one of the major issues with algal biofuels, cost effective dewatering. It also provides a potential selective advantage of the modified strains by improving its ability to compete for iron in an open environment (such as open raceways or photobioreactors). The nation has a critical need to improve its energy security and reduce its dependence on fossil fuels. This research will help address both of these needs. The overall purpose of this research project is business related and focused on commercialization of this technology through integration in a biofuel production process. This research project focuses on a high cost portion of the production process, dewatering, as well as a critical unit process, the heterotrophic bioreactor. The collaboration with OSU and the Cleveland Clinic will result in training of students in this area. The company plans to publish the results of this project once proper control of the intellectual property generated is accomplished.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government