SBIR Phase II: Advanced Molten Salt for Solar Thermal Power Generation with Supercritical Steam Turbines

Award Information
Agency: National Science Foundation
Branch: N/A
Contract: 1230442
Agency Tracking Number: 1230442
Amount: $500,000.00
Phase: Phase II
Program: SBIR
Awards Year: 2012
Solicitation Year: 2012
Solicitation Topic Code: NM
Solicitation Number: N/A
Small Business Information
5980 Horton St. Suite 450, Emeryville, CA, 94608-0000
DUNS: 833101855
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Justin Raade
 (510) 547-2634
Business Contact
 Justin Raade
Phone: (510) 547-2634
Research Institution
This Small Business Innovation Research (SBIR) Phase II project proposes to develop a novel molten salt for solar thermal power generation with supercritical steam turbines. Solar thermal technology developers must increase the operating temperature of their plants to lower their levelized cost of electricity and reduce the cost of thermal storage. Building upon a successful Phase I program, the project team has developed a prototype salt mixture that could enable this trend. It is low cost, exhibits a melting point below 240 deg. C, and has a high maximum temperature of 700 deg. C, a broad operating range currently unavailable elsewhere. The project will conduct a high throughput R & D program to rapidly screen up to thousands of unique mixtures of inorganic salts to optimize the physical properties of the prototype fluid. The project will apply combinatorial chemistry techniques, originally developed for pharmaceutical applications, to this new field. After screening many candidates, the project will evaluate the materials compatibility of a few promising mixtures with common steel and nickel-based alloys. Corrosion mitigation techniques will be developed and evaluated. The project will conduct flow testing in a lab-scale test loop capable of 700 deg. C operation. The broader impact/commercial potential of this project will be the enabling of low-cost electricity from the sun. It is imperative that society reduce its usage of fossil fuels (oil, natural gas, coal) to address pressing concerns - climate change and environmental degradation, energy security, and price volatility. Solar thermal power, a compelling source of renewable electricity at large scale, is the most promising solution to reduce fossil fuel use. However, electricity from solar thermal power currently costs too much to be directly competitive with fossil fuels. Furthermore, solar thermal plants need a cheap way to store heat in order to produce power after sundown or when utilities demand it. This project focuses on the material at the heart of these plants - the heat transfer fluid - and thermal storage system. The market for thermal storage is projected to reach $3.7 billion by 2015. Thermal storage is growing increasingly valuable as utilities realize the need for solar power that can deliver smooth, reliable output regardless of weather conditions. The development of the proposed innovation would both reduce the cost of solar thermal power and enable economical thermal storage, bringing the nation significantly closer to eliminating the use of coal.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government