SBIR Phase II: A Pneumatically Actuated Robot System

Award Information
National Science Foundation
Award Year:
Phase II
Award Id:
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
4410 N Ravenswood Ave #104, Chicago, IL, 60640-0000
Hubzone Owned:
Minority Owned:
Woman Owned:
Principal Investigator:
(773) 728-8852
Business Contact:
(773) 728-8852
Research Institute:

This Small Business Innovation Research (SBIR) Phase II project addresses the challenge of coupling direct drive servo actuators to industrial robotic plants with uncertainties. Enhanced productivity sought in many applications requires higher cycle rates placing great demands on machine kinematics, actuators and control systems. Further increase in operating speed must resolve dynamic challenges intrinsic in directly coupling servo actuators and robot linkages. When compared with existing electromechanical servo actuators - which route power through complex mechanical transmissions - direct-drive actuation of robot linkages enables simple mechanics and rapid motion, but does not provide dynamic isolation between the actuator and robotic plant. Consequently, direct-drive servo actuators are sensitive to variations in plant parameters, unknown disturbances, and un-modeled dynamics. This project will investigate and develop a prototype of an innovative, direct-drive pneumatic robot actuator that employs an advanced control strategy to rapidly accommodate dynamic system variations. Effectiveness of a new control strategy that relies on limited specific knowledge of the plant to optimize robustness to bounded uncertainties will be researched and developed. Success of this project will provide for significant advances in speed, load capacity, and affordability in contemporary industrial robotic systems. The broader impact/commercial potential of this project involves engineering research conducted to enhance understanding of the dynamic interaction between direct-drive servo actuators and robotic mechanisms, and further to enhance the effectiveness and understanding of a control strategy which provides for an advantageous coupling between them, heretofore not practically feasible. This has the potential of introducing transformative change in the robotics industry, and to industrial automation in general. Furthermore, the controls knowledge gained from this research can be extended to many electric servo systems and to industrial control systems in general. Two market segments will be targeted: robotics and general motion control (GMC), both estimated at $7 billion. If software, peripherals and systems engineering are included, the robotics market is estimated at $19 billion. Both the robotics and GMC industries significantly support the national economy with applications ranging from manufacturing and food processing, to medical advances such as remotely controlled surgery, and to national defense. Well-paying new hi-tech jobs are created in engineering and technical services. This research will develop new applications in robotics and industrial automation, educational STEM opportunities, enhanced scientific and technological understanding, making the U.S. more competitive globally.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government