Optical Frequency Comb-Based 10 GHz Microwave Oscillators

Award Information
Agency: Department of Defense
Branch: Defense Advanced Research Projects Agency
Contract: W911QX-12-C-0065
Agency Tracking Number: D121-001-0008
Amount: $99,946.00
Phase: Phase I
Program: SBIR
Awards Year: 2012
Solicitation Year: 2012
Solicitation Topic Code: SB121-001
Solicitation Number: 2012.1
Small Business Information
UA Science and Technology Park, 9030 S. Rita Road, Suite #120, Tucson, AZ, -
DUNS: 014750785
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Rajesh Thapa
 Laser Scientist
 (520) 799-7494
Business Contact
 James Fountain
Title: Director, Contract Administration
Phone: (520) 799-7424
Email: fountain@npphotonics.com
Research Institution
Low phase noise microwave oscillator based on the phase-coherent division of the optical signal are very compelling tool for many scientific applications such as high bandwidth precise timing distribution and synchronization, novel imaging techniques, precision metrology and spectroscopy, and radar system. This is because of the low absorption and scattering in the optical domain. The microwave generation in the phase coherent division approach is based upon high quality factor optical resonator and a frequency comb functioning as an optical-to-microwave divider. The advantage of the frequency comb technology to generate the microwave over the commercial counterpart is the versatility, portability, large bandwidth and unprecedented precision in the fractional frequency stability in both long term and short term time scale. NP Photonics specializes in highly doped, high gain per unit length specialty fibers. This glass and fiber waveguide technology allows for tailoring the optical gain, nonlinear response, and group-velocity dispersion of the active medium. This enables a simple, compact, robust, cost efficient and ultimately integration-compatible approach to develop high repetition rate (~10 GHz) fundamentally mode-locked Er/Yb-doped fiber lasers and cavity stabilized ultralow noise single frequency laser. At the end of phase II project, we propose to achieve 10 GHz microwave electrical signal with the frequency stability of 1 in part 10^17 at 1s of averaging time with exceptional frequency stability and spectral purity. The all-fiber based system will be developed to prototype level such that a packaged system could be transported and used for laboratory demonstration purposes.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government