Advanced Algorithms for Next Generation Wide Field-of-View (WFOV) EO/IR Staring Sensor Exploitation

Award Information
Agency:
Department of Defense
Branch
n/a
Amount:
$149,992.00
Award Year:
2012
Program:
SBIR
Phase:
Phase I
Contract:
FA9453-12-M-0051
Agency Tracking Number:
F112-077-0335
Solicitation Year:
2011
Solicitation Topic Code:
AF112-077
Solicitation Number:
2011.2
Small Business Information
SciTec, Inc.
100 Wall Street, Princeton, NJ, -
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
096845169
Principal Investigator:
Steven Maria
Scientist
(609) 921-3892
smaria@scitec.com
Business Contact:
James Lisowski
CEO
(609) 921-3892
jjl@scitec.com
Research Institution:
Stub




Abstract
ABSTRACT: The mission of the U.S. Air Force Infrared Space Systems Directorate is to develop, acquire, and sustain space-based infrared surveillance, tracking and targeting capabilities for missile early warning, missile defense, battlespace awareness and technical intelligence. To support this mission, enhanced sensors are being developed for the Space-Based Infrared System (SBIRS) for surveillance applications. The increased numbers of detector elements and improved sensitivity of these next-generation next-generation, wide-field-of-view (WFOV) electro-optic (EO) and infrared (IR) sensors motivates the need for advanced algorithms that can efficiently provide real-time exploitation of large volumes of data using limited processing and bandwidth resources. SciTec has been a leader in the research and development of algorithms to exploit Overhead Persistent Infrared (OPIR) data for enhanced extraction, tracking, and exploitation of low-observable target signatures in a timely manner to provide information that is critical for resolving ambiguities, developing tactical parameters, discriminating events and supporting battlespace awareness and missile defense objectives. SciTec has leveraged these algorithm development experiences to identify an innovative end-to-end processing suite for the rapid detection, extraction, and tracking of dim closely-spaced targets in data from WFOV sensors viewing cluttered scenes. BENEFIT: Our proposed product would satisfy several critical objectives for demonstrating feasibility of innovative algorithmic approaches for providing significant improvements in low-observable, multiple, closely-spaced target detection and state vector estimation using WFOV EO/IR staring sensor data. First, our work builds upon an existing clutter suppression technique that has been developed and tested for autonomous processing of R & D data sources that share many of the attributes of these new systems but extends it for use with higher bandwidth data. Second, our work matures and integrates additional processing techniques to address some of the most challenging low observable problems and address closely space object resolution issues. Finally our work combines significant existing capability with these new developments into an environment for rapid tuning against new data sources.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government