Simple Low-Cost High-Performance Unrollable Panel Structure Solar Array for SmallSats

Award Information
Department of Defense
Award Year:
Phase I
Award Id:
Agency Tracking Number:
Solicitation Year:
Solicitation Topic Code:
Solicitation Number:
Small Business Information
75 Robin Hill Road, Building B2, Goleta, CA, -
Hubzone Owned:
Minority Owned:
Woman Owned:
Principal Investigator:
Brian Spence
Principal Investigator
(805) 722-8090
Business Contact:
Steve White
General Manager
(805) 722-4941
Research Institution:

ABSTRACT: Deployable Space Systems, Inc. (DSS) will focus the proposed SBIR program on coupling standard/advanced space-qualified high-efficiency multi-junction photovoltaics (PV) onto a simple innovative ultra-lightweight compactly-stowable elastically self-deployable panel/structure solar array system. The proposed technology, named Aladdin, will enable emerging missions and increase SmallSat operational capability. The Aladdin technology is ultra-simple and has been specifically designed to inherently provide lower risk, cost, mass, and stowage volume, allowing for dramatically increased operational capability for SmallSats. Aladdin repeatedly and elastically rolls-up in the stowed configuration occupying an ultra-compact cylindrical launch package, and then elastically deploys from its own strain/spring energy to an integrated extremely-stiff planar solar array structure. Aladdin employs high modularity and design simplicity allowing for ultra-affordability and reliability from 30W to 300W+ array/wing powers. Aladdin promises to provide revolutionary performance beyond current state-of-the-practice in terms of high specific power / lightweight (exceeding the 200 W/kg BOL AFRL goal), affordability (>30%-50% projected total cost savings depending on PV), broad modular scalability (30W to 300W+ array/wing sizes), high deployed stiffness (>1Hz deployed first mode frequency for largest wing/size), high deployed strength capability, compact stowage volume (>20-36 kW/m3 BOL), simplicity and high reliability, and operability in a 5-yr LEO or 15-yr GEO environment. BENEFIT: The proposed technology is applicable to all future DoD, NASA and commercial (including communications and earth observation) SmallSat missions as a direct replacement for existing technologies. The proposed technology promises to provide the DoD with a near-term and low-risk solar array system for SmallSat applications and will provide revolutionary performance beyond current state-of-the-practice in terms of high specific power / lightweight, affordability, broad/modular scalability, high deployed stiffness, high deployed strength, compact stowage volume, simplicity and high reliability, and operability in a 5-year LEO or 15-year GEO mission environment. The successfully developed technology will provide the end-user with mission-enabling benefits such as increased payload mass/volume capability, lower mission/spacecraft costs, and overall improved/enhanced SmallSat mission capability.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government