Space Environment Durable and Flexible Coating for Multi-Junction Solar Cells

Award Information
Agency: Department of Defense
Branch: Air Force
Contract: FA9453-12-M-0329
Agency Tracking Number: F121-057-1559
Amount: $150,000.00
Phase: Phase I
Program: SBIR
Awards Year: 2012
Solicitation Year: 2012
Solicitation Topic Code: AF121-057
Solicitation Number: 2012.1
Small Business Information
Wright Materials Research Co.
1187 Richfield Center, Beavercreek, OH, -
DUNS: 783569528
HUBZone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: Y
Principal Investigator
 Seng Tan
 (937) 431-8811
Business Contact
 Seng Tan
Title: President
Phone: (937) 431-8811
Research Institution
ABSTRACT: The development of multi-junction solar cells enables more efficient capture of sunlight that enables them to achieve efficiencies of over 40% as compared to 20% for single junction solar cells. The inverted metamorphic (IMM) solar cell allows them to achieve the same conversion efficiency but at much greater flexibility, affordability and mobility. Lightweight, flexible multi-junction solar cells with high efficiency have great promise for spacebased applications where payload sizes are limited but energy demands are high. However, protective cover layers must be used to protect them from atomic oxygen (AO) and ionizing radiation attack, pre-launch humidity, and high-voltage discharge. It must also have high transparency in the wavelength that the solar cell is active. A number of currently used polymeric materials such as Kapton, silicone adhesives, POSS, and polymer matrix carbon fiber composites that are used as carriers in solar cell construction have shown signs of deterioration due to these space environmental effects. In this SBIR Phase I project we propose to develop a space durable, flexible, highly transparent coating system for the protection of multi-junction solar cells. The coating will be applied to the multi-junction solar cells via a low cost technique. Preliminary space environment simulation tests proved that it has great performance. BENEFIT: The proposed space durable, flexible, highly transparent coating system will have numerous potential applications for coating of multi-junction solar cells for space and ground structures including communication spacecraft, NASA spacecraft, large-scale space-based transparent thin films, based material for deployable space mirrors, X-ray telescope, earth-observation radiometry, remote sensing, space-orbiting very-long-baseline interferometry, ground based laser relay mirror, space-based radar, and microspacecraft components.

* information listed above is at the time of submission.

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government