Self Assembled Nanocluster Based Photo Detectors

Award Information
Agency: Department of Defense
Branch: Navy
Contract: N68335-12-C-0055
Agency Tracking Number: N112-109-0297
Amount: $150,000.00
Phase: Phase I
Program: SBIR
Awards Year: 2012
Solicitation Year: 2011
Solicitation Topic Code: N112-109
Solicitation Number: 2011.2
Small Business Information
158 Wheatland Drive, Pembroke, VA, -
DUNS: 008963758
HUBZone Owned: Y
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 Hang Ruan
 (540) 626-6266
Business Contact
 Lisa Lawson
Title: Contracts Administrator
Phone: (540) 626-6266
Research Institution
This Navy Phase I SBIR program would develop self assembled nanocluster based photo detector devices, using NanoSonic's patented new process - molecular level self-assembly performed at room temperature. Specifically, we would combine advances in the nanocluster materials, with electrostatic self-assembly (ESA) processes, to enable large-area, low-cost device manufacturing on rigid and flexible substrates. Such a molecular-level self-assembly approach to form photo detector devices and materials offers advantages over conventional processes, in that very different materials can be incorporated uniformly using the same chemical process at room temperature. During this program, NanoSonic will focus on improving the efficiency of the photo detectors via the following four areas: 1) higher light collection efficiency, 2) higher charge separation efficiency, 3) higher charge transportation efficiency and 4) broadband tandem configuration. We will work on a variation of material properties such as photovoltaics, photoconductivity and photodielectrics and achieve an optical antenna. Nanocluster scatterers may be self-assembled into the detector material to increase local photon interaction, and photonic crystal structure would be incorporated to provide light trapping or steering or to alter the polarization of the incident light. Potentially metal nanoclusters fabricated by NanoSonic can be utilized as a means of achieving surface plasmon resonance increases in energy harvesting. We will consider forming heterostructures using NCs such as CdTe, CdSe, PbS, and PbSe with other semiconductor materials of higher mobility, such as porous silicon (pSi), amorphous silicon (a:Si) and nanocrystalline silicon (nc:Si) to reduce the carrier recombination. We will also investigate the heterogeneous selections of nanocrystals to form a multi-heterojunctioned tandem photodetector device to fully use spectrum of interest. In addition, NanoSonic0304s QD-PMMA composite may be used to fabricate the top films of the photodetector devices as down-converters to shift the incident high-energy photons toward lower energies for which the photodetectors work more efficiently. NanoSonic will experimentally validate nanocluster based photodetector performance through extended field test evaluation, and possible testing with Lockheed Martin, and produce first-generation QD photodetecors and systems for sale.

* Information listed above is at the time of submission. *

Agency Micro-sites

SBA logo
Department of Agriculture logo
Department of Commerce logo
Department of Defense logo
Department of Education logo
Department of Energy logo
Department of Health and Human Services logo
Department of Homeland Security logo
Department of Transportation logo
Environmental Protection Agency logo
National Aeronautics and Space Administration logo
National Science Foundation logo
US Flag An Official Website of the United States Government