Ultrananocrystalline Diamond Microarray Biosensor for Neurochemical Detection

Award Information
Agency: Department of Health and Human Services
Branch: N/A
Contract: 1R43AA021072-01
Agency Tracking Number: R43AA021072
Amount: $149,430.00
Phase: Phase I
Program: SBIR
Awards Year: 2012
Solitcitation Year: 2012
Solitcitation Topic Code: NIAAA
Solitcitation Number: PA11-096
Small Business Information
48 E. Belmont Dr., Romeoville, Il, 60446-
Duns: 143371388
Hubzone Owned: N
Woman Owned: N
Socially and Economically Disadvantaged: N
Principal Investigator
 (815) 293-0900
Business Contact
Phone: (815) 293-0900
Email: nkane@thindiamond.com
Research Institution
DESCRIPTION (provided by applicant): There is an acute need for the development of a new class of microarray biosensors that are sufficiently versatile, selective, sensitive and reliable to allow investigation of the time-dependent neurochemical events ofethanol administration in multiple regions of the brain. Currently, the preferred method for monitoring neurotransmitters in vivo real time is fast-scan cyclic voltammetry (FSCV) and the preferred microelectrode material is carbon fiber. We propose development of the next generation electrode material, boron-doped ultrananocrystalline diamond (BD-UNCD) that offers superior sensitivity and specificity, fast response time, low background currents, long-term stability and resistance to fouling as compared to carbon fibers. The goal is to develop chronically implantable UNCD microarray electrodes for long-term (i.e., months to years) recording of multiple neurochemicals, especially if human compatible. The specific aims of this project are to: (i) develop a reliable, scalable and mass-producible UNCD microarray that exhibits micro or nano electrode electrochemical behavior (i.e. higher signal-to-noise ratio) using cyclic voltammetry and dopamine (the most widely studied neurotransmitter), (ii) demonstrate glutamate detection on a modified UNCD microelectrode and (iii) demonstrate the unique advantages of UNCD microarrays by measuring two neurochemicals (dopamine and glutamate with flow injection analysis and in an anesthetized rat brain) i.e. multiplexing, which is an important step towards multiple neurochemical detection at a single site. As a proof-of-concept, the electrodes will be used to measure the two neurochemicals down to physiological concentrations. The proposed microarray chemical/biosensor could potentially be used for simultaneous measurement of dopamine, glutamate and many other important neurotransmitters in multiple brain regions. If this project is successful, it will accomplish key NIH mission goals, specifically: 1) UNCD's bioinertness, low pseudo capacitance and high selectively due to its surface chemistry will greatly enhance in vivo voltammetry ; 2) UNCD/parylene passivation is novel and completely biocompatible for chronic neurochemical sensing; 3) application of UCND and nanometer thick insulators will greatly advance the way in which probes are fabricated for nanotechnologies' in general; and 4) UNCD can be easily modified with enzymes, antibodies and oligonucleotide probes through photochemical or electrochemical means for biosensors . A recent sensor market report suggests that the medical sensing market will reach 10.9 billion in 2012. Based on a letter of support from a leading neurophysiological microelectrodes and instrumentation company, the expected annual sales for thisproduct at FHC Inc., would be at least 10-15 million and would be expected to exceed this number many-fold over the broader neuroscience market. Also, a greater understanding of real-time sensing of neurotransmitters from this project would enable alternative applications for the technology, including: low-cost, point-of-use, portable sensors for toxins, metabolites and disease biomarkers. PUBLIC HEALTH RELEVANCE: This project will develop a microarray biosensor technology using ultrananocrystalline diamond electrodes to further advance the neuroscience field (brain function and the effects of ethanol administration). Its versatility, sensitivity and reliability are ideally suited for real-time, chronic measurement of multiple neurochemicals andbrain activity mapping.

* information listed above is at the time of submission.

Agency Micro-sites

US Flag An Official Website of the United States Government