Quantitative ultrasound analysis of vascular morphology for cancer assessment

Award Information
Agency:
Department of Health and Human Services
Branch
n/a
Amount:
$298,436.00
Award Year:
2012
Program:
SBIR
Phase:
Phase I
Contract:
1R43CA165621-01
Award Id:
n/a
Agency Tracking Number:
R43CA165621
Solicitation Year:
2012
Solicitation Topic Code:
NCI
Solicitation Number:
PA09-188
Small Business Information
28 Corporate Drive, SUITE 204, Clifton Park, NY, -
Hubzone Owned:
N
Minority Owned:
N
Woman Owned:
N
Duns:
10926207
Principal Investigator:
STEPHEN AYLWARD
(518) 371-3971
stephen.aylward@kitware.com
Business Contact:
VICKI RAFFERTY
(518) 371-3971
contracts@kitware.com
Research Institute:
Stub




Abstract
DESCRIPTION (provided by applicant): There are several features of ultrasound as an imaging modality that make it attractive to clinicians and preclinical researchers today, including its relatively low cost, real-time imaging capability, safety, and portability. These facets make it a particularly accessible imaging technique for rural and lower-income communities, and thus ultrasonic diagnostic approaches have potential for broad reaching impact. Ultrasound imaging is widely used for anatomical imaging and blood flow measurements in the heart and large vessels; however this ubiquitous modality is underutilized as a diagnostic tool in oncology. One reason for this is that aside of assessment of tumor size, ultrasound has relatively poor quantitative capability with respect to tumor morphology or malignancy. New contrast enhanced ultrasound technologies are now enabling detailed images of tissue vascular structure; and the opportunity to interrogate vascular morphology as an indicator of malignancy based on ultrasound data is presented. Prior work by PI Aylward and Kitware has developed algorithms to glean quantifiable vascular morphology metrics from Magnetic Resonance Imaging data, which have then been shown to be reliable predictors of tumor malignancy andresponse to therapy in humans. In this project, Kitware will extend this diagnostic capability to the more widely available modality of contrast enhanced ultrasound. Co-PI Dayton has recently demonstrated ultrasonic microvascular mapping using a new type of ultrasound probe which enables the rapid acquisition of 3D high-contrast and high-resolution images of blood vessel structure. Proposed herein is a collaboration between these two leaders in industry and academia, combining their expertise to create a robust platform for disease assessment using non-invasive ultrasound imaging. If successful, this project will provide a novel and efficient method for clinical ultrasound system manufacturers to implement to assess tumor response to therapy. PUBLIC HEALTH RELEVANCE: Ultrasound is a relatively safe, low cost, portable, real-time imaging device; however its images are relatively poor for detecting and diagnosing tumors. New micro-bubble contrast agents have been developed that enhance the appearance ofvessels within ultrasound images. We have developed a new ultrasound imaging probe that is tuned for capturing contrast-enhanced ultrasound images, and herein we propose to integrate it with a novel vascular image analysis algorithm we have also developed.Together they are able to visualize the vasculature within tumors, make measurements on those vessels, and analyze those measurements to assess the malignancy of tumors and monitor their response to treatment.

* information listed above is at the time of submission.

Agency Micro-sites


SBA logo

Department of Agriculture logo

Department of Commerce logo

Department of Defense logo

Department of Education logo

Department of Energy logo

Department of Health and Human Services logo

Department of Homeland Security logo

Department of Transportation logo

Enviromental Protection Agency logo

National Aeronautics and Space Administration logo

National Science Foundation logo
US Flag An Official Website of the United States Government